
sbt Reference Manual

Contents
Preface . 16

Install . 16
Getting Started . 16
Features of sbt . 16
Also . 17

Getting Started with sbt 17
Installing sbt . 17

Tips and Notes . 18
Installing sbt on macOS . 18

Install sbt with cs setup . 18
Install JDK . 18
Installing from a universal package 18
Installing from a third-party package 18

Installing sbt on Windows . 18
Install sbt with cs setup . 18
Install JDK . 19
Installing from a universal package 19
Windows installer . 19
Installing from a third-party package 19

Installing sbt on Linux . 19
Install sbt with cs setup . 19
Installing from SDKMAN . 19
Install JDK . 20
Installing from a universal package 20
Ubuntu and other Debian-based distributions 20
Red Hat Enterprise Linux and other RPM-based distributions . . 21
Gentoo . 21

sbt by example . 22
Create a minimum sbt build . 22
Start sbt shell . 22
Exit sbt shell . 22
Compile a project . 22

1

Recompile on code change . 22
Create a source file . 23
Run a previous command . 23
Getting help . 23
Run your app . 24
Set ThisBuild / scalaVersion from sbt shell 24
Save the session to build.sbt . 24
Name your project . 25
Reload the build . 25
Add toolkit-test to libraryDependencies 25
Run tests . 26
Run incremental tests continuously 26
Write a test . 26
Make the test pass . 26
Add a library dependency . 27
Use Scala REPL . 27
Make a subproject . 28
List all subprojects . 29
Compile the subproject . 29
Add toolkit-test to the subproject 29
Broadcast commands . 30
Make hello depend on helloCore 31
Parse JSON using uJson . 31
Add sbt-native-packager plugin 33
Reload and create a .zip distribution 33
Dockerize your app . 34
Set the version . 34
Switch scalaVersion temporarily 35
Inspect the dist task . 35
Batch mode . 35
sbt new command . 36
Credits . 36

Directory structure . 36
Base directory . 36
Source code . 36
sbt build definition files . 37
Build support files . 37
Build products . 37
Configuring version control . 38

Running . 38
sbt shell . 38
Batch mode . 38
Continuous build and test . 39
Common commands . 39
Tab completion . 40
sbt shell history . 40

2

IDE Integration . 41
Build definition . 46

Specifying the sbt version . 46
What is a build definition? . 46
How build.sbt defines settings . 47
Keys . 48
Defining tasks and settings . 49
Keys in sbt shell . 50
Imports in build.sbt . 50
Bare .sbt build definition . 51
Adding library dependencies . 51

Multi-project builds . 51
Multiple subprojects . 52
Dependencies . 53
Inter-project dependencies . 55
Default root project . 55
Navigating projects interactively 56
Common code . 56
Appendix: Subproject build definition files 56

Task graph . 57
Terminology . 57
Declaring dependency to other tasks 57
Inlining .value calls . 59
What’s the point of the build.sbt DSL? 63
Summary . 64

Scopes . 65
The whole story about keys . 65
Scope axes . 65
Referring to scopes in a build definition 67
Referring to scoped keys from the sbt shell 68
Examples of scoped key notation in the sbt shell 69
Inspecting scopes . 69
When to specify a scope . 70
Build-level settings . 71
Scope delegation . 72

Appending values . 72
Appending to previous values: += and ++= 72
Appending with dependencies: += and ++= 73

Scope delegation (.value lookup) . 73
Scope delegation rules . 74
Rule 1: Scope axis precedence . 75
Rule 2: The task axis delegation 75
Rule 3: The configuration axis search path 76
Rule 4: The subproject axis search path 76
Inspect command lists the delegates 78
.value lookup vs dynamic dispatch 79

3

Library dependencies . 81
Unmanaged dependencies . 82
Managed Dependencies . 82

Using plugins . 85
What is a plugin? . 86
Declaring a plugin . 86
Enabling and disabling auto plugins 86
Global plugins . 88
Available Plugins . 88

Custom settings and tasks . 88
Defining a key . 88
Implementing a task . 89
Execution semantics of tasks . 90
Turn them into plugins . 93

Organizing the build . 93
sbt is recursive . 94
Tracking dependencies in one place 95
When to use .scala files . 96
Defining auto plugins . 96

Getting Started summary . 96
sbt: The Core Concepts . 96
Advanced Notes . 97

Frequently Asked Questions . 97
Project Information . 97
Usage . 98
Build definitions . 99
Extending sbt . 100
Errors . 103
Dependency Management . 104
Miscellaneous . 104

General Information . 105
Credits . 105
Community Plugins . 116

sbt Organization . 116
Community Ivy Repository . 116
Cross building plugins from sbt 0.13 116
Plugins available for sbt 1.0 (including RC-x) 116

Community Repository Policy . 122
Bintray For Plugins . 122
Using Sonatype . 123

Sonatype setup . 123
sbt setup . 124
Optional steps . 126

Contributing to sbt . 128
Documentation . 129

Changes . 129

4

Migrating from sbt 0.13.x . 129
Migrating case class .copy(...) 129
SbtPlugin . 130
sbt version specific source directory 130
Migrating from sbt 0.12 style . 131
Migrating from the Build trait 134
Migrating from Resolver.withDefaultResolvers 136

sbt 1.4.x releases . 136
sbt 1.4.1 . 136
sbt 1.4.0 . 137
Build server protocol (BSP) support 137
Native thin client . 138
ThisBuild / versionScheme . 138
VirtualFile + RemoteCache . 139
Build linting . 139
Conditional task . 139
Incremental build pipelining . 140
sbt-dependency-graph is in-sourced 140
Fixes with compatibility implications 140
Other updates . 141
Participation . 142

sbt 1.3.x releases . 142
sbt 1.3.0 . 142

sbt 1.2.x releases . 151
sbt 1.2.1 . 151
sbt 1.2.0 . 152

sbt 1.1.x releases . 160
sbt 1.1.6 . 160
sbt 1.1.5 . 161
sbt 1.1.4 . 162
Contributors . 164
sbt 1.1.2 . 164
sbt 1.1.1 . 167
sbt 1.1.0 . 168

sbt 1.0.x releases . 172
sbt 1.0.4 . 172
sbt 1.0.3 . 174
sbt 1.0.2 . 176
sbt 1.0.1 . 177
sbt 1.0.0 . 178

Detailed Topics . 186
Using sbt . 186
Command Line Reference . 187

Notes on the command line . 187
Project-level tasks . 187
Configuration-level tasks . 187

5

General commands . 189
Commands for managing the build definition 190

Sbt runner arguments . 190
Console Project . 197

Description . 197
Accessing settings . 197
Evaluating tasks . 198
State . 198

Cross-building . 198
Introduction . 198
Publishing conventions . 199
Using cross-built libraries . 199
Cross building a project using sbt-projectmatrix 199
Cross building a project statefully 199
Change settings depending on the Scala version 200

Interacting with the Configuration System 206
Selecting commands, tasks, and settings 206
Discovering Settings and Tasks 208

Triggered Execution . 211
Compile . 212
Testing . 212
Running Multiple Commands . 212
Build sources . 212
Clearing the screen . 213
Configuration . 213

Script mode . 215
sbt Script runner . 215

sbt Server . 217
Configuration . 217
Language Server Protocol 3.0 . 217
Server modes . 219
Server discovery and authentication 219
Initialize request . 220
textDocument/publishDiagnostics event 221
textDocument/didSave event . 221
sbt/exec request . 221
sbt/setting request . 222
sbt/completion request . 222
sbt/cancelRequest . 223

Understanding Incremental Recompilation 223
sbt heuristics . 224
How to take advantage of sbt heuristics 225

Implementation of incremental recompilation 225
Overview . 226
Interaction with the Scala compiler 227
Name hashing algorithm . 229

6

What is included in the interface of a Scala class 235
Bytecode Enhancers . 239
Further references . 240

Configuration . 240
Classpaths, sources, and resources . 240

Basics . 240
Compiler Plugin Support . 242

Continuations Plugin Example 243
Version-specific Compiler Plugin Example 243

Configuring Scala . 244
Automatically managed Scala . 244
Using Scala from a local directory 246
sbt’s Scala version . 247

Forking . 247
Enable forking . 247
Change working directory . 248
Forked JVM options . 248
Java Home . 248
Configuring output . 249
Configuring Input . 249
Direct Usage . 249

Global Settings . 250
Basic global configuration file . 250
Global Settings using a Global Plugin 250

Java Sources . 251
Usage . 251
Known issues in mixed mode compilation 252
Ignoring the Scala source directories 252

Mapping Files . 253
Relative to a directory . 253
Rebase . 253
Flatten . 254
Alternatives . 254

Local Scala . 255
Macro Projects . 255

Introduction . 255
Defining the Project Relationships 255
Common Interface . 257
Distribution . 258

Paths . 259
Constructing a File . 259
File Filters . 262

Parallel Execution . 263
Task ordering . 263
Practical constraints . 263
Configuration . 264

7

Future work . 267
External Processes . 268

Usage . 268
Running Project Code . 270

Problems . 271
Testing . 271

Basics . 271
Output . 273
Options . 273
Additional test configurations . 275
JUnit . 278
Extensions . 279
In process class loading . 279
Troubleshooting . 280

Globs . 282
Constructing Globs . 282
Path names . 283
Filters . 283
Depth . 283
Regular expressions . 284

Remote Caching . 289
Dependency Management . 290
Artifacts . 290

Selecting default artifacts . 290
Modifying default artifacts . 291
Defining custom artifacts . 292
Publishing .war files . 293
Using dependencies with artifacts 293

Dependency Management Flow . 293
Library Management . 295

Introduction . 295
Manual Dependency Management 295
Automatic Dependency Management 296

Proxy Repositories . 305
Overview . 305
sbt Configuration . 305
~/.sbt/repositories . 305
Using credentials for the proxy repository 306
Proxying Ivy Repositories . 307

Publishing . 308
Skip publishing . 308
Define the repository . 308
Publishing locally . 309
Credentials . 309
Cross-publishing . 310
Overriding the publishing convention 310

8

Published artifacts . 310
Modifying the generated POM 310
Version scheme . 311

Resolvers . 311
Maven resolvers . 311
Local Maven resolvers . 312
Predefined resolvers . 312
Custom resolvers . 313

Update Report . 315
Filtering a Report and Getting Artifacts 316

Cached Resolution . 319
Setup . 319
Dependency as a graph . 319
Cached Resolution . 319
Caveats and known issues . 320
Motivation . 321

Tasks and Commands . 322
Tasks . 322

Introduction . 322
Features . 322
Defining a Task . 323
Getting values from multiple scopes 326
Advanced Task Operations . 329
Conditional task . 330
Dynamic Computations with Def.taskDyn 331
Using Def.sequential . 331
Handling Failure . 332

Caching . 336
Cache.cached . 336
Previous value . 338
Tracked.lastOutput . 338
Tracked.inputChanged . 339
FileInfo . 343
Tracked.inputChanged . 343
Tracked.outputChanged . 344
Tracked.diffInputs . 346
Tracked.diffOutputs . 349
Case study: sbt-scalafmt . 349
Summary . 351

Input Tasks . 351
Input Keys . 351
Basic Input Task Definition . 352
Input Task using Parsers . 352
The InputTask type . 353
Using other input tasks . 354
Preapplying input . 355

9

Get a Task from an InputTask 356
Commands . 357

What is a “command”? . 357
Introduction . 357
Defining a Command . 358
Full Example . 359

Parsing and tab completion . 361
Basic parsers . 361
Built-in parsers . 362
Combining parsers . 362
Transforming results . 363
Controlling tab completion . 363
Dependent parsers . 364

State and actions . 365
Command-related data . 365
Project-related data . 366
Project data . 366
Classpaths . 367
Running tasks . 367
Using State in a task . 368
Updating State in a task . 368

Tasks/Settings: Motivation . 369
Application . 370

Plugins and Best Practices . 371
General Best Practices . 371

project/ vs. ~/.sbt/ . 371
Local settings . 371
.sbtrc . 372
Generated files . 372
Don’t hard code . 372
Don’t “mutate” files . 372
Use absolute paths . 373
Parser combinators . 374

Plugins . 374
Using an auto plugin . 374
By Description . 375
Plugin dependencies . 376
Creating an auto plugin . 377
Using a library in a build definition example 383
Publishing a plugin . 385
Best Practices . 385

Plugins Best Practices . 386
Key naming convention: Use prefix 386
Artifact naming convention . 387
(optional) Plugin naming convention 387
Don’t use default package . 387

10

Get your plugins known . 387
Reuse existing keys . 388
Use settings and tasks. Avoid commands. 388
Provide core feature in a plain old Scala object 388
Configuration advice . 388
Scoping advice . 391

Setting up GitHub Actions with sbt 393
Set project/build.properties 393
Read the GitHub Actions manual 394
Basic setup . 394
Custom JVM options . 394
Caching . 395
Build matrix . 396
Sample .github/workflows/ci.yml setting 398
sbt-github-actions . 399

Setting up Travis CI with sbt . 399
Set project/build.properties 400
Read the Travis manual . 400
Basic setup . 400
Plugin build setup . 401
Custom JVM options . 401
Caching . 402
Build matrix . 403
Notification . 403
Dealing with flaky network or tests 404
More things . 404
Sample setting . 405

Testing sbt plugins . 405
scripted test framework . 406
step 1: snapshot . 406
step 2: SbtPlugin . 406
step 3: src/sbt-test . 407
step 4: write a script . 407
step 5: run the script . 408
step 6: custom assertion . 408
step 7: testing the test . 409
step 8: get inspired . 410

sbt new and Templates . 410
Trying new command . 410
Giter8 support . 411
How to extend sbt new . 412

Cross building plugins . 413
Mixing libraries and sbt plugins in a build 414

How to… . 414
Classpaths . 415

11

Include a new type of managed artifact on the classpath, such as
mar . 415

Get the classpath used for compilation 415
Get the runtime classpath, including the project’s compiled classes415
Get the test classpath, including the project’s compiled test classes416
Use packaged jars on classpaths instead of class directories 416
Get all managed jars for a configuration 416
Get the files included in a classpath 417
Get the module and artifact that produced a classpath entry . . 417

Customizing paths . 417
Change the default Scala source directory 417
Change the default Java source directory 418
Change the default resource directory 418
Change the default (unmanaged) library directory 418
Disable using the project’s base directory as a source directory . 419
Add an additional source directory 419
Add an additional resource directory 419
Include/exclude files in the source directory 419
Include/exclude files in the resource directory 420
Include only certain (unmanaged) libraries 420

Generating files . 421
Generate sources . 421
Generate resources . 422

Inspect the build . 423
Show or search help for a command, task, or setting 423
List available tasks . 423
List available settings . 424
Display the description and type of a setting or task 424
Display the delegation chain of a setting or task 425
Show the list of projects and builds 425
Show the current session (temporary) settings 426
Show basic information about sbt and the current build 426
Show the value of a setting . 426
Show the result of executing a task 426
Show the classpath used for compilation or testing 427
Show the main classes detected in a project 427
Show the test classes detected in a project 427

Interactive mode . 427
Use tab completion . 427
Show more tab completion suggestions 428
Modify the default JLine keybindings 428
Configure the prompt string . 429
Use history . 429
Change the location of the interactive history file 429
Use the same history for all projects 429
Disable interactive history . 430

12

Run commands before entering interactive mode 430
Configure and use logging . 430

View the logging output of the previously executed command . . 430
View the previous logging output of a specific task 431
Show warnings from the previous compilation 432
Change the logging level globally 432
Change the logging level for a specific task, configuration, or project433
Configure printing of stack traces 433
Print the output of tests immediately instead of buffering 434
Add a custom logger . 434
Log messages in a task . 436
Log messages in a setting . 436

Project metadata . 436
Set the project name . 436
Set the project version . 437
Set the project organization . 437
Set the project’s homepage and other metadata 437

Configure packaging . 437
Use the packaged jar on classpaths instead of class directory . . . 437
Add manifest attributes . 438
Change the file name of a package 438
Modify the contents of the package 438

Running commands . 439
Pass arguments to a command or task in batch mode 439
Provide multiple commands to run consecutively 439
Read commands from a file . 439
Define an alias for a command or task 439
Quickly evaluate a Scala expression 440

Configure and use Scala . 440
Set the Scala version used for building the project 440
Disable the automatic dependency on the Scala library 440
Temporarily switch to a different Scala version 440
Use a local Scala installation for building a project 441
Build a project against multiple Scala versions 441
Enter the Scala REPL with a project’s dependencies on the class-

path, but not the compiled project classes 441
Enter the Scala REPL with a project’s dependencies and com-

piled code on the classpath 441
Enter the Scala REPL with plugins and the build definition on

the classpath . 441
Define the initial commands evaluated when entering the Scala

REPL . 442
Define the commands evaluated when exiting the Scala REPL . . 442
Use the Scala REPL from project code 442

Generate API documentation . 443
Select javadoc or scaladoc . 443

13

Set the options used for generating scaladoc independently of
compilation . 443

Add options for scaladoc to the compilation options 443
Set the options used for generating javadoc independently of com-

pilation . 444
Add options for javadoc to the compilation options 444
Enable automatic linking to the external Scaladoc of managed

dependencies . 444
Enable manual linking to the external Scaladoc of managed de-

pendencies . 444
Define the location of API documentation for a library 444

Define Custom Tasks . 445
Define a Task that runs tests in specific sub-projects 445

How to take an action on startup . 445
Track file inputs and outputs . 446

File inputs . 447
File outputs . 449
Filters . 450
File change tracking . 451

Troubleshoot memory issues . 452
Sequencing . 453

Defining a sequential task with Def.sequential 453
Defining a dynamic task with Def.taskDyn 454
Doing something after an input task 455
Defining a dynamic input task with Def.inputTaskDyn 457
How to sequence using commands 458

How to define a custom dependency configuration 458
Cautions on custom dependency configurations 459
Example basic custom configuration 459
Example sandbox configuration 460
How do I add a test configuration? 461

Examples . 461
.sbt build examples . 461
.sbt build with .scala files example . 466

project/Resolvers.scala . 466
project/Dependencies.scala . 466
project/ShellPromptPlugin.scala 467
build.sbt . 467

Advanced configurations example . 469
Advanced command example . 470
Index . 472

Values and Types . 472
Methods . 473

Developer’s Guide (Work in progress) 475
Towards sbt 1.0 . 475
Modularization . 476

14

Module summary . 476
sbt Coding Guideline . 478

General goal . 478
Documentation . 478
Modular design . 478
Binary resiliency . 480
Other public API matters . 481
Style matters . 481

sbt-datatype . 482
Using the plugin . 483
Datatype schema . 483
Using datatype to retain binary compatibility 487
JSON codec generation . 489
Existing parameters for protocols, records, etc. 491
Settings . 492
Syntax summary . 492

Compiler Interface . 493
Fetching the most specific sources . 493
sbt Launcher . 494
Getting Started with the sbt launcher 494

Overview . 495
Sbt Launcher Architecture . 499

Module Resolution . 499
Classloader Caching and Isolation 500
Caching . 500
Locking . 500
Service Discovery and Isolation 500

sbt Launcher Configuration . 501
Example . 501
Variable Substitution . 504
Syntax . 505

Notes . 506
Core Principles . 506

Introduction to build state . 506
Settings Architecture . 507
Task Architecture . 508

Settings Core . 509
Example . 509
sbt Settings Discussion . 512

Setting Initialization . 513
Creating Command Line Applications Using sbt 514

Hello World Example . 514
Archived pages . 517
Hello, World . 517

sbt new command . 517
Running your app . 517

15

Exiting sbt shell . 518
Build definition . 518

Preface

sbt is a build tool for Scala, Java, and more. It requires Java 1.8 or later.

Install

See Installing sbt for the setup instructions.

Getting Started

To get started, please read the Getting Started Guide. You will save yourself a
lot of time if you have the right understanding of the big picture up-front. All
documentation may be found via the table of contents included on the left of
every page.

See also Frequently asked question.

See How can I get help? for where you can get help about sbt. For discussing
sbt development, use Discussions. To stay up to date about the news related to
sbt, follow us [@scala_sbt](https://twitter.com/scala_sbt).

Features of sbt

• Little or no configuration required for simple projects
• Scala-based build definition that can use the full flexibility of Scala code
• Accurate incremental recompilation using information extracted from the

compiler
• Library management support using Coursier
• Continuous compilation and testing with triggered execution
• Supports mixed Scala/Java projects
• Supports testing with ScalaCheck, specs, and ScalaTest. JUnit is sup-

ported by a plugin.
• Starts the Scala REPL with project classes and dependencies on the class-

path
• Modularization supported with sub-projects
• External project support (list a git repository as a dependency!)
• Parallel task execution, including parallel test execution

16

https://github.com/d40cht/sbt-cpp
Setup.html
Getting-Started.html
Faq.html
https://www.scala-sbt.org/community.html#how-can-I-get-help
https://github.com/sbt/sbt/discussions
Basic-Def.html
Library-Dependencies.html
Triggered-Execution.html
Java-Sources.html
Testing.html
Multi-Project.html
Parallel-Execution.html

Also

This documentation can be forked on GitHub. Feel free to make corrections
and add documentation.

Documentation for 0.13.x has been archived here. This documentation applies
to sbt 1.9.8.

See also the API Documentation, and the index of names and types.

Getting Started with sbt

sbt uses a small number of concepts to support flexible and powerful build
definitions. There are not that many concepts, but sbt is not exactly like other
build systems and there are details you will stumble on if you haven’t read the
documentation.

The Getting Started Guide covers the concepts you need to know to create and
maintain an sbt build definition.

It is highly recommended to read the Getting Started Guide!

If you are in a huge hurry, the most important conceptual background can be
found in build definition, scopes, and task graph. But we don’t promise that
it’s a good idea to skip the other pages in the guide.

It’s best to read in order, as later pages in the Getting Started Guide build on
concepts introduced earlier.

Thanks for trying out sbt and have fun!

Installing sbt

To create an sbt project, you’ll need to take these steps:

• Install JDK (We recommend Eclipse Adoptium Temurin JDK 8, 11, or
17).

• Install sbt.
• Setup a simple hello world project
• Move on to running to learn how to run sbt.
• Then move on to .sbt build definition to learn more about build definitions.

Ultimately, the installation of sbt boils down to a launcher JAR and a shell
script, but depending on your platform, we provide several ways to make the
process less tedious. Head over to the installation steps for macOS, Windows,
or Linux.

17

https://github.com/sbt/website/
https://www.scala-sbt.org/0.13/docs/index.html
https://www.scala-sbt.org/1.x/api/sbt/index.html
Name-Index.html
Basic-Def.html
Scopes.html
Task-Graph.html
Hello.html
Running.html
Basic-Def.html
Installing-sbt-on-Mac.html
Installing-sbt-on-Windows.html
Installing-sbt-on-Linux.html

Tips and Notes

If you have any trouble running sbt, see Command line reference on JVM op-
tions.

Installing sbt on macOS

Install sbt with cs setup

Follow Install page, and install Scala using Coursier. This should install the
latest stable version of sbt.

Install JDK

Follow the link to install JDK 8 or 11, or use SDKMAN!.

SDKMAN!

$ sdk install java $(sdk list java | grep -o "\b8\.[0-9]*\.[0-9]*\-tem" | head -1)
$ sdk install sbt

Installing from a universal package

Download ZIP or TGZ package, and expand it.

Installing from a third-party package

Note: Third-party packages may not provide the latest version.
Please make sure to report any issues with these packages to the
relevant maintainers.

Homebrew

$ brew install sbt

Installing sbt on Windows

Install sbt with cs setup

Follow Install page, and install Scala using Coursier. This should install the
latest stable version of sbt.

18

Command-Line-Reference.html
https://www.scala-lang.org/download/
https://adoptium.net
https://sdkman.io/
https://sdkman.io/
https://github.com/sbt/sbt/releases/download/v1.9.8/sbt-1.9.8.zip
https://github.com/sbt/sbt/releases/download/v1.9.8/sbt-1.9.8.tgz
https://brew.sh/
https://www.scala-lang.org/download/

Install JDK

Follow the link to install JDK 8 or 11.

Installing from a universal package

Download ZIP or TGZ package and expand it.

Windows installer

Download msi installer and install it.

Installing from a third-party package

Note: Third-party packages may not provide the latest version.
Please make sure to report any issues with these packages to the
relevant maintainers.

Scoop

$ scoop install sbt

Chocolatey

$ choco install sbt

Installing sbt on Linux

Install sbt with cs setup

Follow Install page, and install Scala using Coursier. This should install the
latest stable version of sbt.

Installing from SDKMAN

To install both JDK and sbt, consider using SDKMAN.

$ sdk install java $(sdk list java | grep -o "\b8\.[0-9]*\.[0-9]*\-tem" | head -1)
$ sdk install sbt

Using Coursier or SDKMAN has two advantages.

19

https://adoptium.net
https://github.com/sbt/sbt/releases/download/v1.9.8/sbt-1.9.8.zip
https://github.com/sbt/sbt/releases/download/v1.9.8/sbt-1.9.8.tgz
https://github.com/sbt/sbt/releases/download/v1.9.8/sbt-1.9.8.msi
https://scoop.sh/
https://chocolatey.org
https://www.scala-lang.org/download/
https://sdkman.io/

1. They will install the official packaging by Eclipse Adoptium, as opposed
to the “mystery meat OpenJDK builds”.

2. They will install tgz packaging of sbt that contains all JAR files. (DEB
and RPM packages do not to save bandwidth)

Install JDK

You must first install a JDK. We recommend Eclipse Adoptium Temurin
JDK 8, JDK 11, or JDK 17.

The details around the package names differ from one distribution to another.
For example, Ubuntu xenial (16.04LTS) has openjdk-8-jdk. Redhat family calls
it java-1.8.0-openjdk-devel.

Installing from a universal package

Download ZIP or TGZ package and expand it.

Ubuntu and other Debian-based distributions

DEB package is officially supported by sbt.

Ubuntu and other Debian-based distributions use the DEB format, but usually
you don’t install your software from a local DEB file. Instead they come with
package managers both for the command line (e.g. apt-get, aptitude) or with
a graphical user interface (e.g. Synaptic). Run the following from the terminal
to install sbt (You’ll need superuser privileges to do so, hence the sudo).

sudo apt-get update
sudo apt-get install apt-transport-https curl gnupg -yqq
echo "deb https://repo.scala-sbt.org/scalasbt/debian all main" | sudo tee /etc/apt/sources.list.d/sbt.list
echo "deb https://repo.scala-sbt.org/scalasbt/debian /" | sudo tee /etc/apt/sources.list.d/sbt_old.list
curl -sL "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0x2EE0EA64E40A89B84B2DF73499E82A75642AC823" | sudo -H gpg --no-default-keyring --keyring gnupg-ring:/etc/apt/trusted.gpg.d/scalasbt-release.gpg --import
sudo chmod 644 /etc/apt/trusted.gpg.d/scalasbt-release.gpg
sudo apt-get update
sudo apt-get install sbt

Package managers will check a number of configured repositories for packages
to offer for installation. You just have to add the repository to the places your
package manager will check.

Once sbt is installed, you’ll be able to manage the package in aptitude or
Synaptic after you updated their package cache. You should also be able to see
the added repository at the bottom of the list in System Settings -> Software
& Updates -> Other Software:

20

https://mail.openjdk.java.net/pipermail/jdk8u-dev/2019-May/009330.html
https://packages.ubuntu.com/hu/xenial/openjdk-8-jdk
https://pkgs.org/download/java-1.8.0-openjdk-devel
https://github.com/sbt/sbt/releases/download/v1.9.8/sbt-1.9.8.zip
https://github.com/sbt/sbt/releases/download/v1.9.8/sbt-1.9.8.tgz
https://dl.bintray.com/sbt/debian/sbt-1.9.8.deb

Ubuntu Software & Updates Screenshot

Note: There have been reports about SSL error using Ubuntu: Server
access Error: java.lang.RuntimeException: Unexpected error:
java.security.InvalidAlgorithmParameterException: the trustAnchors
parameter must be non-empty url=https://repo1.maven.org/maven2/org/scala-sbt/sbt/1.1.0/sbt-1.1.0.pom,
which apparently stems from OpenJDK 9 using PKCS12 format for
/etc/ssl/certs/java/cacerts cert-bug. According to https://stackove
rflow.com/a/50103533/3827 it is fixed in Ubuntu Cosmic (18.10), but Ubuntu
Bionic LTS (18.04) is still waiting for a release. See the answer for a
workaround.

Note: sudo apt-key adv --keyserver hkps://keyserver.ubuntu.com:443
--recv 2EE0EA64E40A89B84B2DF73499E82A75642AC823 may not work on
Ubuntu Bionic LTS (18.04) since it’s using a buggy GnuPG, so we are advising
to use web API to download the public key in the above.

Red Hat Enterprise Linux and other RPM-based distributions

RPM package is officially supported by sbt.

Red Hat Enterprise Linux and other RPM-based distributions use the RPM
format. Run the following from the terminal to install sbt (You’ll need superuser
privileges to do so, hence the sudo).

remove old Bintray repo file
sudo rm -f /etc/yum.repos.d/bintray-rpm.repo
curl -L https://www.scala-sbt.org/sbt-rpm.repo > sbt-rpm.repo
sudo mv sbt-rpm.repo /etc/yum.repos.d/
sudo yum install sbt

On Fedora (31 and above), use sbt-rpm.repo:

remove old Bintray repo file
sudo rm -f /etc/yum.repos.d/bintray-rpm.repo
curl -L https://www.scala-sbt.org/sbt-rpm.repo > sbt-rpm.repo
sudo mv sbt-rpm.repo /etc/yum.repos.d/
sudo dnf install sbt

Note: Please report any issues with these to the sbt project.

Gentoo

The official tree contains ebuilds for sbt. To install the latest available version
do:

emerge dev-java/sbt

21

https://bugs.launchpad.net/ubuntu/+source/ca-certificates-java/+bug/1739631
https://stackoverflow.com/a/50103533/3827
https://stackoverflow.com/a/50103533/3827
https://dl.bintray.com/sbt/rpm/sbt-1.9.8.rpm
https://github.com/sbt/sbt

sbt by example

This page assumes you’ve installed sbt 1.

Let’s start with examples rather than explaining how sbt works or why.

Create a minimum sbt build

$ mkdir foo-build
$ cd foo-build
$ touch build.sbt

Start sbt shell

$ sbt
[info] Updated file /tmp/foo-build/project/build.properties: set sbt.version to 1.9.3
[info] welcome to sbt 1.9.3 (Eclipse Adoptium Java 17.0.8)
[info] Loading project definition from /tmp/foo-build/project
[info] loading settings for project foo-build from build.sbt ...
[info] Set current project to foo-build (in build file:/tmp/foo-build/)
[info] sbt server started at local:///Users/eed3si9n/.sbt/1.0/server/abc4fb6c89985a00fd95/sock
[info] started sbt server
sbt:foo-build>

Exit sbt shell

To leave sbt shell, type exit or use Ctrl+D (Unix) or Ctrl+Z (Windows).

sbt:foo-build> exit

Compile a project

As a convention, we will use the sbt:...> or > prompt to mean that we’re in
the sbt interactive shell.

$ sbt
sbt:foo-build> compile

Recompile on code change

Prefixing the compile command (or any other command) with ~ causes the
command to be automatically re-executed whenever one of the source files within
the project is modified. For example:

22

Setup.html

sbt:foo-build> ~compile
[success] Total time: 0 s, completed 28 Jul 2023, 13:32:35
[info] 1. Monitoring source files for foo-build/compile...
[info] Press <enter> to interrupt or '?' for more options.

Create a source file

Leave the previous command running. From a different shell or in your
file manager create in the foo-build directory the following nested directories:
src/main/scala/example. Then, create Hello.scala in the example directory
using your favorite editor as follows:

package example

object Hello {
def main(args: Array[String]): Unit = {
println("Hello")

}
}

This new file should be picked up by the running command:

[info] Build triggered by /tmp/foo-build/src/main/scala/example/Hello.scala. Running 'compile'.
[info] compiling 1 Scala source to /tmp/foo-build/target/scala-2.12/classes ...
[success] Total time: 0 s, completed 28 Jul 2023, 13:38:55
[info] 2. Monitoring source files for foo-build/compile...
[info] Press <enter> to interrupt or '?' for more options.

Press Enter to exit ~compile.

Run a previous command

From sbt shell, press up-arrow twice to find the compile command that you
executed at the beginning.

sbt:foo-build> compile

Getting help

Use the help command to get basic help about the available commands.

sbt:foo-build> help

<command> (; <command>)* Runs the provided semicolon-separated commands.
about Displays basic information about sbt and the build.
tasks Lists the tasks defined for the current project.

23

settings Lists the settings defined for the current project.
reload (Re)loads the current project or changes to plugins project or returns from it.
new Creates a new sbt build.
new Creates a new sbt build.
projects Lists the names of available projects or temporarily adds/removes extra builds to the session.

....

Display the description of a specific task:

sbt:foo-build> help run
Runs a main class, passing along arguments provided on the command line.

Run your app

sbt:foo-build> run
[info] running example.Hello
Hello
[success] Total time: 0 s, completed 28 Jul 2023, 13:40:31

Set ThisBuild / scalaVersion from sbt shell

sbt:foo-build> set ThisBuild / scalaVersion := "2.13.12"
[info] Defining ThisBuild / scalaVersion
[info] The new value will be used by Compile / bspBuildTarget, Compile / dependencyTreeCrossProjectId and 50 others.
[info] Run `last` for details.
[info] Reapplying settings...
[info] set current project to foo-build (in build file:/tmp/foo-build/)

Check the scalaVersion setting:

sbt:foo-build> scalaVersion
[info] 2.13.12

Save the session to build.sbt

We can save the ad-hoc settings using session save.

sbt:foo-build> session save
[info] Reapplying settings...
[info] set current project to foo-build (in build file:/tmp/foo-build/)
[warn] build source files have changed
[warn] modified files:
[warn] /tmp/foo-build/build.sbt
[warn] Apply these changes by running `reload`.
[warn] Automatically reload the build when source changes are detected by setting `Global / onChangedBuildSource := ReloadOnSourceChanges`.

24

[warn] Disable this warning by setting `Global / onChangedBuildSource := IgnoreSourceChanges`.

build.sbt file should now contain:

ThisBuild / scalaVersion := "2.13.12"

Name your project

Using an editor, change build.sbt as follows:

ThisBuild / scalaVersion := "2.13.12"
ThisBuild / organization := "com.example"

lazy val hello = (project in file("."))
.settings(
name := "Hello"

)

Reload the build

Use the reload command to reload the build. The command causes the
build.sbt file to be re-read, and its settings applied.

sbt:foo-build> reload
[info] welcome to sbt 1.9.3 (Eclipse Adoptium Java 17.0.8)
[info] loading project definition from /tmp/foo-build/project
[info] loading settings for project hello from build.sbt ...
[info] set current project to Hello (in build file:/tmp/foo-build/)
sbt:Hello>

Note that the prompt has now changed to sbt:Hello>.

Add toolkit-test to libraryDependencies

Using an editor, change build.sbt as follows:

ThisBuild / scalaVersion := "2.13.12"
ThisBuild / organization := "com.example"

lazy val hello = project
.in(file("."))
.settings(
name := "Hello",
libraryDependencies += "org.scala-lang" %% "toolkit-test" % "0.1.7" % Test

)

Use the reload command to reflect the change in build.sbt.

25

sbt:Hello> reload

Run tests

sbt:Hello> test

Run incremental tests continuously

sbt:Hello> ~testQuick

Write a test

Leaving the previous command running, create a file named src/test/scala/example/HelloSuite.scala
using an editor:

class HelloSuite extends munit.FunSuite {
test("Hello should start with H") {
assert("hello".startsWith("H"))

}
}

~testQuick should pick up the change:

[info] 2. Monitoring source files for hello/testQuick...
[info] Press <enter> to interrupt or '?' for more options.
[info] Build triggered by /tmp/foo-build/src/test/scala/example/HelloSuite.scala. Running 'testQuick'.
[info] compiling 1 Scala source to /tmp/foo-build/target/scala-2.13/test-classes ...
HelloSuite:
==> X HelloSuite.Hello should start with H 0.004s munit.FailException: /tmp/foo-build/src/test/scala/example/HelloSuite.scala:4 assertion failed
3: test("Hello should start with H") {
4: assert("hello".startsWith("H"))
5: }

at munit.FunSuite.assert(FunSuite.scala:11)
at HelloSuite.$anonfun$new$1(HelloSuite.scala:4)

[error] Failed: Total 1, Failed 1, Errors 0, Passed 0
[error] Failed tests:
[error] HelloSuite
[error] (Test / testQuick) sbt.TestsFailedException: Tests unsuccessful

Make the test pass

Using an editor, change src/test/scala/example/HelloSuite.scala to:

26

class HelloSuite extends munit.FunSuite {
test("Hello should start with H") {
assert("Hello".startsWith("H"))

}
}

Confirm that the test passes, then press Enter to exit the continuous test.

Add a library dependency

Using an editor, change build.sbt as follows:

ThisBuild / scalaVersion := "2.13.12"
ThisBuild / organization := "com.example"

lazy val hello = project
.in(file("."))
.settings(
name := "Hello",
libraryDependencies ++= Seq(
"org.scala-lang" %% "toolkit" % "0.1.7",
"org.scala-lang" %% "toolkit-test" % "0.1.7" % Test

)
)

Use the reload command to reflect the change in build.sbt.

Use Scala REPL

We can find out the current weather in New York.

sbt:Hello> console
[info] Starting scala interpreter...
Welcome to Scala 2.13.12 (OpenJDK 64-Bit Server VM, Java 17).
Type in expressions for evaluation. Or try :help.

scala> :paste
// Entering paste mode (ctrl-D to finish)

import sttp.client4.quick._
import sttp.client4.Response

val newYorkLatitude: Double = 40.7143
val newYorkLongitude: Double = -74.006
val response: Response[String] = quickRequest

27

.get(
uri"https://api.open-meteo.com/v1/forecast?latitude=$newYorkLatitude&longitude=$newYorkLongitude¤t_weather=true"

)
.send()

println(ujson.read(response.body).render(indent = 2))

// press Ctrl+D

// Exiting paste mode, now interpreting.

{
"latitude": 40.710335,
"longitude": -73.99307,
"generationtime_ms": 0.36704540252685547,
"utc_offset_seconds": 0,
"timezone": "GMT",
"timezone_abbreviation": "GMT",
"elevation": 51,
"current_weather": {
"temperature": 21.3,
"windspeed": 16.7,
"winddirection": 205,
"weathercode": 3,
"is_day": 1,
"time": "2023-08-04T10:00"

}
}
import sttp.client4.quick._
import sttp.client4.Response
val newYorkLatitude: Double = 40.7143
val newYorkLongitude: Double = -74.006
val response: sttp.client4.Response[String] = Response({"latitude":40.710335,"longitude":-73.99307,"generationtime_ms":0.36704540252685547,"utc_offset_seconds":0,"timezone":"GMT","timezone_abbreviation":"GMT","elevation":51.0,"current_weather":{"temperature":21.3,"windspeed":16.7,"winddirection":205.0,"weathercode":3,"is_day":1,"time":"2023-08-04T10:00"}},200,,List(:status: 200, content-encoding: deflate, content-type: application/json; charset=utf-8, date: Fri, 04 Aug 2023 10:09:11 GMT),List(),RequestMetadata(GET,https://api.open-meteo.com/v1/forecast?latitude=40.7143&longitude...

scala> :q // to quit

Make a subproject

Change build.sbt as follows:

ThisBuild / scalaVersion := "2.13.12"
ThisBuild / organization := "com.example"

lazy val hello = project
.in(file("."))

28

.settings(
name := "Hello",
libraryDependencies ++= Seq(
"org.scala-lang" %% "toolkit" % "0.1.7",
"org.scala-lang" %% "toolkit-test" % "0.1.7" % Test

)
)

lazy val helloCore = project
.in(file("core"))
.settings(
name := "Hello Core"

)

Use the reload command to reflect the change in build.sbt.

List all subprojects

sbt:Hello> projects
[info] In file:/tmp/foo-build/
[info] * hello
[info] helloCore

Compile the subproject

sbt:Hello> helloCore/compile

Add toolkit-test to the subproject

Change build.sbt as follows:

ThisBuild / scalaVersion := "2.13.12"
ThisBuild / organization := "com.example"

val toolkitTest = "org.scala-lang" %% "toolkit-test" % "0.1.7"

lazy val hello = project
.in(file("."))
.settings(
name := "Hello",
libraryDependencies ++= Seq(
"org.scala-lang" %% "toolkit" % "0.1.7",
toolkitTest % Test

)

29

)

lazy val helloCore = project
.in(file("core"))
.settings(
name := "Hello Core",
libraryDependencies += toolkitTest % Test

)

Broadcast commands

Set aggregate so that the command sent to hello is broadcast to helloCore
too:

ThisBuild / scalaVersion := "2.13.12"
ThisBuild / organization := "com.example"

val toolkitTest = "org.scala-lang" %% "toolkit-test" % "0.1.7"

lazy val hello = project
.in(file("."))
.aggregate(helloCore)
.settings(
name := "Hello",
libraryDependencies ++= Seq(
"org.scala-lang" %% "toolkit" % "0.1.7",
toolkitTest % Test

)
)

lazy val helloCore = project
.in(file("core"))
.settings(
name := "Hello Core",
libraryDependencies += toolkitTest % Test

)

After reload, ~testQuick now runs on both subprojects:

sbt:Hello> ~testQuick

Press Enter to exit the continuous test.

30

Make hello depend on helloCore

Use .dependsOn(...) to add a dependency on other subprojects. Also let’s
move the toolkit dependency to helloCore.

ThisBuild / scalaVersion := "2.13.12"
ThisBuild / organization := "com.example"

val toolkitTest = "org.scala-lang" %% "toolkit-test" % "0.1.7"

lazy val hello = project
.in(file("."))
.aggregate(helloCore)
.dependsOn(helloCore)
.settings(
name := "Hello",
libraryDependencies += toolkitTest % Test

)

lazy val helloCore = project
.in(file("core"))
.settings(
name := "Hello Core",
libraryDependencies += "org.scala-lang" %% "toolkit" % "0.1.7",
libraryDependencies += toolkitTest % Test

)

Parse JSON using uJson

Let’s use uJson from the toolkit in helloCore.

ThisBuild / scalaVersion := "2.13.12"
ThisBuild / organization := "com.example"

val toolkitTest = "org.scala-lang" %% "toolkit-test" % "0.1.7"

lazy val hello = project
.in(file("."))
.aggregate(helloCore)
.dependsOn(helloCore)
.settings(
name := "Hello",
libraryDependencies += toolkitTest % Test

)

lazy val helloCore = project

31

.in(file("core"))

.settings(
name := "Hello Core",
libraryDependencies += "org.scala-lang" %% "toolkit" % "0.1.7",
libraryDependencies += toolkitTest % Test

)

After reload, add core/src/main/scala/example/core/Weather.scala:

package example.core

import sttp.client4.quick._
import sttp.client4.Response

object Weather {
def temp() = {

val response: Response[String] = quickRequest
.get(
uri"https://api.open-meteo.com/v1/forecast?latitude=40.7143&longitude=-74.006¤t_weather=true"

)
.send()

val json = ujson.read(response.body)
json.obj("current_weather")("temperature").num

}
}

Next, change src/main/scala/example/Hello.scala as follows:

package example

import example.core.Weather

object Hello {
def main(args: Array[String]): Unit = {

val temp = Weather.temp()
println(s"Hello! The current temperature in New York is $temp C.")

}
}

Let’s run the app to see if it worked:

sbt:Hello> run
[info] compiling 1 Scala source to /tmp/foo-build/core/target/scala-2.13/classes ...
[info] compiling 1 Scala source to /tmp/foo-build/target/scala-2.13/classes ...
[info] running example.Hello
Hello! The current temperature in New York is 22.7 C.

32

Add sbt-native-packager plugin

Using an editor, create project/plugins.sbt:

addSbtPlugin("com.github.sbt" % "sbt-native-packager" % "1.9.4")

Next change build.sbt as follows to add JavaAppPackaging:

ThisBuild / scalaVersion := "2.13.12"
ThisBuild / organization := "com.example"

val toolkitTest = "org.scala-lang" %% "toolkit-test" % "0.1.7"

lazy val hello = project
.in(file("."))
.aggregate(helloCore)
.dependsOn(helloCore)
.enablePlugins(JavaAppPackaging)
.settings(
name := "Hello",
libraryDependencies += toolkitTest % Test,
maintainer := "A Scala Dev!"

)

lazy val helloCore = project
.in(file("core"))
.settings(
name := "Hello Core",
libraryDependencies += "org.scala-lang" %% "toolkit" % "0.1.7",
libraryDependencies += toolkitTest % Test

)

Reload and create a .zip distribution

sbt:Hello> reload
...
sbt:Hello> dist
[info] Wrote /private/tmp/foo-build/target/scala-2.13/hello_2.13-0.1.0-SNAPSHOT.pom
[info] Main Scala API documentation to /tmp/foo-build/target/scala-2.13/api...
[info] Main Scala API documentation successful.
[info] Main Scala API documentation to /tmp/foo-build/core/target/scala-2.13/api...
[info] Wrote /tmp/foo-build/core/target/scala-2.13/hello-core_2.13-0.1.0-SNAPSHOT.pom
[info] Main Scala API documentation successful.
[success] All package validations passed
[info] Your package is ready in /tmp/foo-build/target/universal/hello-0.1.0-SNAPSHOT.zip

Here’s how you can run the packaged app:

33

$ /tmp/someother
$ cd /tmp/someother
$ unzip -o -d /tmp/someother /tmp/foo-build/target/universal/hello-0.1.0-SNAPSHOT.zip
$./hello-0.1.0-SNAPSHOT/bin/hello
Hello! The current temperature in New York is 22.7 C.

Dockerize your app

Note that a Docker daemon will need to be running in order for this to work.

sbt:Hello> Docker/publishLocal
....
[info] Built image hello with tags [0.1.0-SNAPSHOT]

Here’s how to run the Dockerized app:

$ docker run hello:0.1.0-SNAPSHOT
Hello! The current temperature in New York is 22.7 C.

Set the version

Change build.sbt as follows:

ThisBuild / version := "0.1.0"
ThisBuild / scalaVersion := "2.13.12"
ThisBuild / organization := "com.example"

val toolkitTest = "org.scala-lang" %% "toolkit-test" % "0.1.7"

lazy val hello = project
.in(file("."))
.aggregate(helloCore)
.dependsOn(helloCore)
.enablePlugins(JavaAppPackaging)
.settings(
name := "Hello",
libraryDependencies += toolkitTest % Test,
maintainer := "A Scala Dev!"

)

lazy val helloCore = project
.in(file("core"))
.settings(
name := "Hello Core",
libraryDependencies += "org.scala-lang" %% "toolkit" % "0.1.7",

34

libraryDependencies += toolkitTest % Test
)

Switch scalaVersion temporarily

sbt:Hello> ++3.3.1!
[info] Forcing Scala version to 3.3.1 on all projects.
[info] Reapplying settings...
[info] Set current project to Hello (in build file:/tmp/foo-build/)

Check the scalaVersion setting:

sbt:Hello> scalaVersion
[info] helloCore / scalaVersion
[info] 3.3.1
[info] scalaVersion
[info] 3.3.1

This setting will go away after reload.

Inspect the dist task

To find out more about dist, try help and inspect.

sbt:Hello> help dist
Creates the distribution packages.
sbt:Hello> inspect dist

To call inspect recursively on the dependency tasks use inspect tree.

sbt:Hello> inspect tree dist
[info] dist = Task[java.io.File]
[info] +-Universal / dist = Task[java.io.File]
....

Batch mode

You can also run sbt in batch mode, passing sbt commands directly from the
terminal.

$ sbt clean "testOnly HelloSuite"

Note: Running in batch mode requires JVM spinup and JIT each time, so your
build will run much slower. For day-to-day coding, we recommend using
the sbt shell or a continuous test like ~testQuick.

35

sbt new command

You can use the sbt new command to quickly setup a simple “Hello world” build.

$ sbt new scala/scala-seed.g8
....
A minimal Scala project.

name [My Something Project]: hello

Template applied in ./hello

When prompted for the project name, type hello.

This will create a new project under a directory named hello.

Credits

This page is based on the Essential sbt tutorial written by William “Scala
William” Narmontas.

Directory structure

This page assumes you’ve installed sbt and seen sbt by example.

Base directory

In sbt’s terminology, the “base directory” is the directory containing the project.
So if you created a project hello containing /tmp/foo-build/build.sbt as in
the sbt by example, /tmp/foo-build is your base directory.

Source code

sbt uses the same directory structure as Maven for source files by default (all
paths are relative to the base directory):

src/
main/
resources/

<files to include in main jar here>
scala/

<main Scala sources>
scala-2.12/

<main Scala 2.12 specific sources>
java/

36

https://www.scalawilliam.com/essential-sbt/
Setup.html
sbt-by-example.html
sbt-by-example.html
https://maven.apache.org/

<main Java sources>
test/
resources

<files to include in test jar here>
scala/

<test Scala sources>
scala-2.12/

<test Scala 2.12 specific sources>
java/

<test Java sources>

Other directories in src/ will be ignored. Additionally, all hidden directories
will be ignored.

Source code can be placed in the project’s base directory as hello/app.scala,
which may be OK for small projects, though for normal projects people tend
to keep the projects in the src/main/ directory to keep things neat. The fact
that you can place *.scala source code in the base directory might seem like
an odd trick, but this fact becomes relevant later.

sbt build definition files

The build definition is described in build.sbt (actually any files named *.sbt)
in the project’s base directory.

build.sbt

Build support files

In addition to build.sbt, project directory can contain .scala files that define
helper objects and one-off plugins. See organizing the build for more.

build.sbt
project/
Dependencies.scala

You may see .sbt files inside project/ but they are not equivalent to .sbt files
in the project’s base directory. Explaining this will come later, since you’ll need
some background information first.

Build products

Generated files (compiled classes, packaged jars, managed files, caches, and
documentation) will be written to the target directory by default.

37

Organizing-Build.html
Organizing-Build.html
Organizing-Build.html

Configuring version control

Your .gitignore (or equivalent for other version control systems) should con-
tain:

target/

Note that this deliberately has a trailing / (to match only directories) and it
deliberately has no leading / (to match project/target/ in addition to plain
target/).

Running

This page describes how to use sbt once you have set up your project. It assumes
you’ve installed sbt and went through sbt by example.

sbt shell

Run sbt in your project directory with no arguments:

$ sbt

Running sbt with no command line arguments starts sbt shell. sbt shell has a
command prompt (with tab completion and history!).

For example, you could type compile at the sbt shell:

> compile

To compile again, press up arrow and then enter.

To run your program, type run.

To leave sbt shell, type exit or use Ctrl+D (Unix) or Ctrl+Z (Windows).

Batch mode

You can also run sbt in batch mode, specifying a space-separated list of sbt
commands as arguments. For sbt commands that take arguments, pass the
command and arguments as one argument to sbt by enclosing them in quotes.
For example,

$ sbt clean compile "testOnly TestA TestB"

In this example, testOnly has arguments, TestA and TestB. The commands
will be run in sequence (clean, compile, then testOnly).

38

Setup.html
sbt-by-example.html

Note: Running in batch mode requires JVM spinup and JIT each time, so your
build will run much slower. For day-to-day coding, we recommend using
the sbt shell or Continuous build and test feature described below.

Beginning in sbt 0.13.16, using batch mode in sbt will issue an informational
startup message,

$ sbt clean compile
[info] Executing in batch mode. For better performance use sbt's shell
...

It will only be triggered for sbt compile, and it can also be suppressed with
suppressSbtShellNotification := true.

Continuous build and test

To speed up your edit-compile-test cycle, you can ask sbt to automatically re-
compile or run tests whenever you save a source file.

Make a command run when one or more source files change by prefixing the
command with ~. For example, in sbt shell try:

> ~testQuick

Press enter to stop watching for changes.

You can use the ~ prefix with either sbt shell or batch mode.

See Triggered Execution for more details.

Common commands

Here are some of the most common sbt commands. For a more complete list,
see Command Line Reference.

Command

Description

clean

Deletes all generated files (in the target directory).

compile

Compiles the main sources (in src/main/scala and src/main/java directories).

test

Compiles and runs all tests.

console

39

Triggered-Execution.html
Command-Line-Reference.html

Starts the Scala interpreter with a classpath including the compiled sources
and all dependencies. To return to sbt, type :quit, Ctrl+D (Unix), or Ctrl+Z
(Windows).

run <argument>*

Runs the main class for the project in the same virtual machine as sbt.

package

Creates a jar file containing the files in src/main/resources and the classes com-
piled from src/main/scala and src/main/java.

help <command>

Displays detailed help for the specified command. If no command is provided,
displays brief descriptions of all commands.

reload

Reloads the build definition (build.sbt, project/.scala, project/.sbt files). Needed
if you change the build definition.

Tab completion

sbt shell has tab completion, including at an empty prompt. A special sbt
convention is that pressing tab once may show only a subset of most likely
completions, while pressing it more times shows more verbose choices.

sbt shell history

sbt shell remembers history even if you exit sbt and restart it. The easiest way
to access history is to press the up arrow key to cycle through previously entered
commands.

Note: Ctrl-R incrementally searches the history backwards.

Through JLine’s integration with the terminal environment, you can customize
sbt shell by changing $HOME/.inputrc file. For example, the following set-
tings in $HOME/.inputrc will allow up- and down-arrow to perform prefix-based
search of the history.

"\e[A": history-search-backward
"\e[B": history-search-forward
"\e[C": forward-char
"\e[D": backward-char

sbt shell also supports the following commands:

Command

40

Description

!

Show history command help.

!!

Execute the previous command again.

!:

Show all previous commands.

!:n

Show the last n commands.

!n

Execute the command with index n, as shown by the !: command.

!-n

Execute the nth command before this one.

!string

Execute the most recent command starting with ‘string.’

!?string

Execute the most recent command containing ‘string.’

IDE Integration

While it’s possible to code Scala with just an editor and sbt, most programmers
today use an Integrated Development Environment, or IDE for short. Two of
the popular IDEs in Scala are Metals and IntelliJ IDEA, and they both integrate
with sbt builds.

• Using sbt as Metals build server
• Importing to IntelliJ IDEA
• Using sbt as IntelliJ IDEA build server
• Using Neovim as Metals frontend

Using sbt as Metals build server

Metals is an open source language server for Scala, which can act as the back-
end for VS Code and other editors that support LSP. Metals in turn supports
different build servers including sbt via the Build Server Protocol (BSP).

To use Metals on VS Code:

1. Install Metals from Extensions tab: Metals

41

https://scalameta.org/metals/
https://www.jetbrains.com/idea/
https://scalameta.org/metals/
https://code.visualstudio.com/
https://github.com/Microsoft/language-server-protocol/blob/master/protocol.md
https://build-server-protocol.github.io/

2. Open a directory containing a build.sbt file.
3. From the menubar, run View > Command Palette… (Cmd-Shift-P on

macOS) “Metals: Switch build server”, and select “sbt” Metals
4. Once the import process is complete, open a Scala file to see that code

completion works: Metals

Use the following setting to opt-out some of the subprojects from BSP.

bspEnabled := false

When you make changes to the code and save them (Cmd-S on macOS), Metals
will invoke sbt to do the actual building work.

Interactive debugging on VS Code

1. Metals supports interactive debugging by setting break points in the code:
Metals

2. Interactive debugging can be started by right-clicking on an unit test, and
selecting “Debug Test.” When the test hits a break point, you can inspect
the values of the variables: Metals

See Debugging page on VS Code documentation for more details on how to
navigate an interactive debugging session.

Logging into sbt session

While Metals uses sbt as the build server, we can also log into the same sbt
session using a thin client.

• From Terminal section, type in sbt --client Metals

This lets you log into the sbt session Metals has started. In there you can call
testOnly and other tasks with the code already compiled.

Importing to IntelliJ IDEA

IntelliJ IDEA is an IDE created by JetBrains, and the Community Edition is
open source under Apache v2 license. IntelliJ integrates with many build tools,
including sbt, to import the project. This is a more traditional approach that
might be more reliable than using BSP approach.

To import a build to IntelliJ IDEA:

1. Install Scala plugin on the Plugins tab: IntelliJ
2. From Projects, open a directory containing a build.sbt file. IntelliJ
3. Once the import process is complete, open a Scala file to see that code

completion works.

IntelliJ Scala plugin uses its own lightweight compilation engine to detect errors,
which is fast but sometimes incorrect. Per compiler-based highlighting, IntelliJ
can be configured to use the Scala compiler for error highlighting.

42

https://code.visualstudio.com/docs/editor/debugging
https://www.jetbrains.com/idea/
https://blog.jetbrains.com/scala/2021/07/27/intellij-scala-plugin-2021-2/#Compiler-based_highlighting

Interactive debugging with IntelliJ IDEA

1. IntelliJ supports interactive debugging by setting break points in the code:
IntelliJ

2. Interactive debugging can be started by right-clicking on an unit test, and
selecting “Debug ‘<test name>’.” Alternatively, you can click the
green “run” icon on the left part of the editor near the unit test. When
the test hits a break point, you can inspect the values of the variables:
IntelliJ

See Debug Code page on IntelliJ documentation for more details on how to
navigate an interactive debugging session.

Using sbt as IntelliJ IDEA build server (advanced)

Importing the build to IntelliJ means that you’re effectively using IntelliJ as the
build tool and the compiler while you code (see also compiler-based highlighting).
While many users are happy with the experience, depending on the code base
some of the compilation errors may be false, it may not work well with plugins
that generate sources, and generally you might want to code with the identical
build semantics as sbt. Thankfully, modern IntelliJ supports alternative build
servers including sbt via the Build Server Protocol (BSP).

The benefit of using BSP with IntelliJ is that you’re using sbt to do the actual
build work, so if you are the kind of programmer who had sbt session up on the
side, this avoids double compilation.

Import to IntelliJ

BSP with IntelliJ

Reliability

� Reliable behavior

� Less mature. Might encounter UX issues.

Responsiveness

�

�

Correctness

� Uses its own compiler for type checking, but can be configured to use scalac

� Uses Zinc + Scala compiler for type checking

Generated source

� Generated source requires resync

�

Build reuse

43

https://www.jetbrains.com/help/idea/debugging-code.html
https://blog.jetbrains.com/scala/2021/07/27/intellij-scala-plugin-2021-2/#Compiler-based_highlighting
https://build-server-protocol.github.io/

� Using sbt side-by-side requires double build

�

To use sbt as build server on IntelliJ:

1. Install Scala plugin on the Plugins tab.
2. To use the BSP approach, do not use Open button on the Project tab:

IntelliJ
3. From menubar, click New > “Project From Existing Sources”, or Find

Action (Cmd-Shift-P on macOS) and type “Existing” to find “Import
Project From Existing Sources”: IntelliJ

4. Open a build.sbt file. Select BSP when prompted: IntelliJ
5. Select sbt (recommended) as the tool to import the BSP workspace:

IntelliJ
6. Once the import process is complete, open a Scala file to see that code

completion works: IntelliJ

Use the following setting to opt-out some of the subprojects from BSP.

bspEnabled := false

• Open Preferences, search BSP and check “build automatically on file save”,
and uncheck “export sbt projects to Bloop before import”: IntelliJ

When you make changes to the code and save them (Cmd-S on macOS), IntelliJ
will invoke sbt to do the actual building work.

See also Igal Tabachnik’s Using BSP effectively in IntelliJ and Scala for more
details.

Logging into sbt session

We can also log into the existing sbt session using the thin client.

• From Terminal section, type in sbt --client IntelliJ

This lets you log into the sbt session IntelliJ has started. In there you can call
testOnly and other tasks with the code already compiled.

Using Neovim as Metals frontend (advanced)

Neovim is a modern fork of Vim that supports LSP out-of-box, which means it
can be configured as a frontend for Metals.

Chris Kipp, who is a maintainer of Metals, created nvim-metals plugin that
provides comprehensive Metals support on Neovim. To install nvim-metals,
create lsp.lua under $XDG_CONFIG_HOME/nvim/lua/ based on Chris’s lsp.lua
and adjust to your preference. For example, comment out its plugins section
and load the listed plugins using the plugin manager of your choice such as
vim-plug.

44

https://hmemcpy.com/2021/09/bsp-and-intellij/
https://neovim.io/
https://github.com/Microsoft/language-server-protocol/blob/master/protocol.md
https://github.com/scalameta/nvim-metals
https://github.com/scalameta/nvim-metals/discussions/39#discussion-82302

In init.vim, the file can be loaded as:

lua << END
require('lsp')
END

Per lsp.lua, g:metals_status should be displayed on the status line, which
can be done using lualine.nvim etc.

1. Next, open a Scala file in an sbt build using Neovim.
2. Run :MetalsInstall when prompted.
3. Run :MetalsStartServer.
4. If the status line is set up, you should see something like “Connecting to

sbt” or “Indexing.”
5. Code completion works when you’re in Insert mode, and you can tab

through the candidates:

• A build is triggered upon saving changes, and compilation errors are dis-
played inline:

Go to definition

1. You can jump to definition of the symbol under cursor by using gD (exact
keybinding can be customized):

2. Use Ctrl-O to return to the old buffer.

Hover

• To display the type information of the symbol under cursor, like hovering,
use K in Normal mode:

Listing diagnostics

1. To list all compilation errors and warnings, use <leader>aa:
2. Since this is in the standard quickfix list, you can use the command such

as :cnext and :cprev to nagivate through the errors and warnings.
3. To list just the errors, use <leader>ae.

Interactive debugging with Neovim

1. Thanks to nvim-dap, Neovim supports interactive debugging. Set break
points in the code using <leader>dt:

2. Nagivate to a unit test, confirm that it’s built by hovering (K), and
then “debug continue” (<leader>dc) to start a debugger. Choose “1:
RunOrTest” when prompted.

3. When the test hits a break point, you can inspect the values of the vari-
ables by debug hovering (<leader>dK):

45

4. “debug continue” (<leader>dc) again to end the session.

See nvim-metals regarding further details.

Logging into sbt session

We can also log into the existing sbt session using the thin client.

1. In a new vim window type :terminal to start the built-in terminal.
2. Type in sbt --client

Even though it’s inside Neovim, tab completion etc works fine inside.

Build definition

This page describes sbt build definitions, including some “theory” and the syntax
of build.sbt. It assumes you have installed a recent version of sbt, such as sbt
1.9.8, know how to use sbt, and have read the previous pages in the Getting
Started Guide.

This page discusses the build.sbt build definition.

Specifying the sbt version

As part of your build definition you will specify the version of sbt that your
build uses. This allows people with different versions of the sbt launcher to
build the same projects with consistent results. To do this, create a file named
project/build.properties that specifies the sbt version as follows:

sbt.version=1.9.8

If the required version is not available locally, the sbt launcher will download
it for you. If this file is not present, the sbt launcher will choose an arbitrary
version, which is discouraged because it makes your build non-portable.

What is a build definition?

A build definition is defined in build.sbt, and it consists of a set of projects
(of type Project). Because the term project can be ambiguous, we often call it
a subproject in this guide.

For instance, in build.sbt you define the subproject located in the current
directory like this:

lazy val root = (project in file("."))
.settings(
name := "Hello",

46

https://github.com/scalameta/nvim-metals
Running.html
../api/sbt/Project.html

scalaVersion := "2.12.7"
)

Each subproject is configured by key-value pairs.

For example, one key is name and it maps to a string value, the name of your
subproject. The key-value pairs are listed under the .settings(...) method
as follows:

lazy val root = (project in file("."))
.settings(
name := "Hello",
scalaVersion := "2.12.7"

)

How build.sbt defines settings

build.sbt defines subprojects, which holds a sequence of key-value pairs called
setting expressions using build.sbt domain-specific language(DSL).

ThisBuild / organization := "com.example"
ThisBuild / scalaVersion := "2.12.18"
ThisBuild / version := "0.1.0-SNAPSHOT"

lazy val root = (project in file("."))
.settings(
name := "hello"

)

Let’s take a closer look at the build.sbt DSL: setting expression Each entry is
called a setting expression. Some among them are also called task expressions.
We will see more on the difference later in this page.

A setting expression consists of three parts:

1. Left-hand side is a key.
2. Operator, which in this case is :=
3. Right-hand side is called the body, or the setting body.

On the left-hand side, name, version, and scalaVersion are keys. A key is
an instance of SettingKey[T], TaskKey[T], or InputKey[T] where T is the
expected value type. The kinds of key are explained below.

Because key name is typed to SettingKey[String], the := operator on name
is also typed specifically to String. If you use the wrong value type, the build
definition will not compile:

lazy val root = (project in file("."))
.settings(

47

../api/sbt/SettingKey.html
../api/sbt/TaskKey.html
../api/sbt/InputKey.html

name := 42 // will not compile
)

build.sbt may also be interspersed with vals, lazy vals, and defs. Top-level
objects and classes are not allowed in build.sbt. Those should go in the
project/ directory as Scala source files.

Keys

Types

There are three flavors of key:

• SettingKey[T]: a key for a value evaluated only once (the value is com-
puted when loading the subproject, and kept around).

• TaskKey[T]: a key for a value, called a task, that is evaluated each time
it’s referred to (similarly to a scala function), potentially with side effects.

• InputKey[T]: a key for a task that has command line arguments as input.
Check out Input Tasks for more details.

Built-in Keys

The built-in keys are just fields in an object called Keys. A build.sbt implicitly
has an import sbt.Keys._, so sbt.Keys.name can be referred to as name.

Custom Keys

Custom keys may be defined with their respective creation methods:
settingKey, taskKey, and inputKey. Each method expects the type of
the value associated with the key as well as a description. The name of the key
is taken from the val the key is assigned to. For example, to define a key for a
new task called hello,

lazy val hello = taskKey[Unit]("An example task")

Here we have used the fact that an .sbt file can contain vals and defs in
addition to settings. All such definitions are evaluated before settings regardless
of where they are defined in the file.

Note: Typically, lazy vals are used instead of vals to avoid initial-
ization order problems.

Task vs Setting keys

A TaskKey[T] is said to define a task. Tasks are operations such as compile or
package. They may return Unit (Unit is void for Scala), or they may return

48

Input-Tasks.html
../api/sbt/Keys$.html

a value related to the task, for example package is a TaskKey[File] and its
value is the jar file it creates.

Each time you start a task execution, for example by typing compile at the
interactive sbt prompt, sbt will re-run any tasks involved exactly once.

sbt’s key-value pairs describing the subproject can keep around a fixed string
value for a setting such as name, but it has to keep around some executable code
for a task such as compile – even if that executable code eventually returns a
string, it has to be re-run every time.

A given key always refers to either a task or a plain setting. That is, “taskiness”
(whether to re-run each time) is a property of the key, not the value.

Listing all available setting keys and task keys

The list of settings keys that currently exist in your build definition can be
obtained by typing settings or settings -v at the sbt prompt.

Likewise, the list of tasks keys currently defined can be obtained by typing
tasks or tasks -v. You can also have a look at Command Line Reference for
a discussion on built-in tasks commonly used at the sbt prompt.

A key will be printed in the resulting list if:

• it’s built-in sbt (like name or scalaVersion in the examples above)
• you created it as a custom key
• you imported a plugin that brought it into the build definition.

You can also type help <key> at the sbt prompt for more information.

Defining tasks and settings

Using :=, you can assign a value to a setting and a computation to a task. For
a setting, the value will be computed once at project load time. For a task, the
computation will be re-run each time the task is executed.

For example, to implement the hello task from the previous section:

lazy val hello = taskKey[Unit]("An example task")

lazy val root = (project in file("."))
.settings(
hello := { println("Hello!") }

)

We already saw an example of defining settings when we defined the project’s
name,

49

Command-Line-Reference.html

lazy val root = (project in file("."))
.settings(
name := "hello"

)

Types for tasks and settings

From a type-system perspective, the Setting created from a task key is slightly
different from the one created from a setting key. taskKey := 42 results in a
Setting[Task[T]] while settingKey := 42 results in a Setting[T]. For most
purposes this makes no difference; the task key still creates a value of type T
when the task executes.

The T vs. Task[T] type difference has this implication: a setting can’t depend
on a task, because a setting is evaluated only once on project load and is not
re-run. More on this in task graph.

Keys in sbt shell

In sbt shell, you can type the name of any task to execute that task. This is
why typing compile runs the compile task. compile is a task key.

If you type the name of a setting key rather than a task key, the value of
the setting key will be displayed. Typing a task key name executes the task
but doesn’t display the resulting value; to see a task’s result, use show <task
name> rather than plain <task name>. The convention for keys names is to use
camelCase so that the command line name and the Scala identifiers are the
same.

To learn more about any key, type inspect <keyname> at the sbt interactive
prompt. Some of the information inspect displays won’t make sense yet, but
at the top it shows you the setting’s value type and a brief description of the
setting.

Imports in build.sbt

You can place import statements at the top of build.sbt; they need not be
separated by blank lines.

There are some implied default imports, as follows:

import sbt._
import Keys._

(In addition, if you have auto plugins, the names marked under autoImport will
be imported.)

50

Task-Graph.html

Bare .sbt build definition

The settings can be written directly into the build.sbt file instead of putting
them inside a .settings(...) call. We call this the “bare style.”

ThisBuild / version := "1.0"
ThisBuild / scalaVersion := "2.12.18"

This syntax is recommended for ThisBuild scoped settings and adding plugins.
See later section about the scoping and the plugins.

Adding library dependencies

To depend on third-party libraries, there are two options. The first is to drop
jars in lib/ (unmanaged dependencies) and the other is to add managed depen-
dencies, which will look like this in build.sbt:

val derby = "org.apache.derby" % "derby" % "10.4.1.3"

ThisBuild / organization := "com.example"
ThisBuild / scalaVersion := "2.12.18"
ThisBuild / version := "0.1.0-SNAPSHOT"

lazy val root = (project in file("."))
.settings(
name := "Hello",
libraryDependencies += derby

)

This is how you add a managed dependency on the Apache Derby library, version
10.4.1.3.

The libraryDependencies key involves two complexities: += rather than :=,
and the % method. += appends to the key’s old value rather than replacing it,
this is explained in Task Graph. The % method is used to construct an Ivy
module ID from strings, explained in Library dependencies.

We’ll skip over the details of library dependencies until later in the Getting
Started Guide. There’s a whole page covering it later on.

Multi-project builds

This page introduces multiple subprojects in a single build.

Please read the earlier pages in the Getting Started Guide first, in particular
you need to understand build.sbt before reading this page.

51

Task-Graph.html
Library-Dependencies.html
Library-Dependencies.html
Basic-Def.html

Multiple subprojects

It can be useful to keep multiple related subprojects in a single build, especially
if they depend on one another and you tend to modify them together.

Each subproject in a build has its own source directories, generates its own jar
file when you run package, and in general works like any other project.

A project is defined by declaring a lazy val of type Project. For example, :

lazy val util = (project in file("util"))

lazy val core = (project in file("core"))

The name of the val is used as the subproject’s ID, which is used to refer to the
subproject at the sbt shell.

Optionally the base directory may be omitted if it’s the same as the name of
the val.

lazy val util = project

lazy val core = project

Build-wide settings

To factor out common settings across multiple subprojects, define the settings
scoped to ThisBuild. ThisBuild acts as a special subproject name that you
can use to define default value for the build. When you define one or more
subprojects, and when the subproject does not define scalaVersion key, it will
look for ThisBuild / scalaVersion.

The limitation is that the right-hand side needs to be a pure value or settings
scoped to Global or ThisBuild, and there are no default settings scoped to
subprojects. (See Scopes)

ThisBuild / organization := "com.example"
ThisBuild / version := "0.1.0-SNAPSHOT"
ThisBuild / scalaVersion := "2.12.18"

lazy val core = (project in file("core"))
.settings(

// other settings
)

lazy val util = (project in file("util"))
.settings(

// other settings
)

52

../api/sbt/Project.html
Scopes.html

Now we can bump up version in one place, and it will be reflected across
subprojects when you reload the build.

Common settings

Another way to factor out common settings across multiple projects is to create
a sequence named commonSettings and call settings method on each project.

lazy val commonSettings = Seq(
target := { baseDirectory.value / "target2" }

)

lazy val core = (project in file("core"))
.settings(

commonSettings,
// other settings

)

lazy val util = (project in file("util"))
.settings(

commonSettings,
// other settings

)

Dependencies

Projects in the build can be completely independent of one another, but usually
they will be related to one another by some kind of dependency. There are two
types of dependencies: aggregate and classpath.

Aggregation

Aggregation means that running a task on the aggregate project will also run it
on the aggregated projects. For example,

lazy val root = (project in file("."))
.aggregate(util, core)

lazy val util = (project in file("util"))

lazy val core = (project in file("core"))

In the above example, the root project aggregates util and core. Start up sbt
with two subprojects as in the example, and try compile. You should see that
all three projects are compiled.

53

In the project doing the aggregating, the root project in this case, you can control
aggregation per-task. For example, to avoid aggregating the update task:

lazy val root = (project in file("."))
.aggregate(util, core)
.settings(
update / aggregate := false

)

[...]

update / aggregate is the aggregate key scoped to the update task. (See
scopes.)

Note: aggregation will run the aggregated tasks in parallel and with no defined
ordering between them.

Classpath dependencies

A project may depend on code in another project. This is done by adding a
dependsOn method call. For example, if core needed util on its classpath, you
would define core as:

lazy val core = project.dependsOn(util)

Now code in core can use classes from util. This also creates an ordering
between the projects when compiling them; util must be updated and compiled
before core can be compiled.

To depend on multiple projects, use multiple arguments to dependsOn, like
dependsOn(bar, baz).

Per-configuration classpath dependencies

core dependsOn(util) means that the compile configuration in core de-
pends on the compile configuration in util. You could write this explicitly as
dependsOn(util % "compile->compile").

The -> in "compile->compile" means “depends on” so "test->compile"
means the test configuration in core would depend on the compile configura-
tion in util.

Omitting the ->config part implies ->compile, so dependsOn(util %
"test") means that the test configuration in core depends on the Compile
configuration in util.

A useful declaration is "test->test" which means test depends on test. This
allows you to put utility code for testing in util/src/test/scala and then use
that code in core/src/test/scala, for example.

54

Scopes.html

You can have multiple configurations for a dependency, separated by semicolons.
For example, dependsOn(util % "test->test;compile->compile").

Inter-project dependencies

On extremely large projects with many files and many subprojects, sbt can
perform less optimally at continuously watching files that have changed and use
a lot of disk and system I/O.

sbt has trackInternalDependencies and exportToInternal settings.
These can be used to control whether to trigger compilation of a de-
pendent subprojects when you call compile. Both keys will take one of
three values: TrackLevel.NoTracking, TrackLevel.TrackIfMissing, and
TrackLevel.TrackAlways. By default they are both set to TrackLevel.TrackAlways.

When trackInternalDependencies is set to TrackLevel.TrackIfMissing,
sbt will no longer try to compile internal (inter-project) dependencies automat-
ically, unless there are no *.class files (or JAR file when exportJars is true)
in the output directory.

When the setting is set to TrackLevel.NoTracking, the compilation of internal
dependencies will be skipped. Note that the classpath will still be appended, and
dependency graph will still show them as dependencies. The motivation is to
save the I/O overhead of checking for the changes on a build with many subpro-
jects during development. Here’s how to set all subprojects to TrackIfMissing.

ThisBuild / trackInternalDependencies := TrackLevel.TrackIfMissing
ThisBuild / exportJars := true

lazy val root = (project in file("."))
.aggregate(....)

The exportToInternal setting allows the dependee subprojects to opt out of the
internal tracking, which might be useful if you want to track most subprojects
except for a few. The intersection of the trackInternalDependencies and
exportToInternal settings will be used to determine the actual track level.
Here’s an example to opt-out one project:

lazy val dontTrackMe = (project in file("dontTrackMe"))
.settings(
exportToInternal := TrackLevel.NoTracking

)

Default root project

If a project is not defined for the root directory in the build, sbt creates a default
one that aggregates all other projects in the build.

55

Because project hello-foo is defined with base = file("foo"), it will be
contained in the subdirectory foo. Its sources could be directly under foo, like
foo/Foo.scala, or in foo/src/main/scala. The usual sbt directory structure
applies underneath foo with the exception of build definition files.

Navigating projects interactively

At the sbt interactive prompt, type projects to list your projects and project
<projectname> to select a current project. When you run a task like compile,
it runs on the current project. So you don’t necessarily have to compile the root
project, you could compile only a subproject.

You can run a task in another project by explicitly specifying the project ID,
such as subProjectID/compile.

Common code

The definitions in .sbt files are not visible in other .sbt files. In order to share
code between .sbt files, define one or more Scala files in the project/ directory
of the build root.

See organizing the build for details.

Appendix: Subproject build definition files

Any .sbt files in foo, say foo/build.sbt, will be merged with the build defi-
nition for the entire build, but scoped to the hello-foo project.

If your whole project is in hello, try defining a different version (version :=
"0.6") in hello/build.sbt, hello/foo/build.sbt, and hello/bar/build.sbt.
Now show version at the sbt interactive prompt. You should get something
like this (with whatever versions you defined):

> show version
[info] hello-foo/*:version
[info] 0.7
[info] hello-bar/*:version
[info] 0.9
[info] hello/*:version
[info] 0.5

hello-foo/*:version was defined in hello/foo/build.sbt, hello-bar/*:version
was defined in hello/bar/build.sbt, and hello/*:version was defined in
hello/build.sbt. Remember the syntax for scoped keys. Each version key
is scoped to a project, based on the location of the build.sbt. But all three
build.sbt are part of the same build definition.

56

Directories.html
Organizing-Build.html
Scopes.html

Style choices:

• Each subproject’s settings can go into *.sbt files in the base directory
of that project, while the root build.sbt declares only minimum project
declarations in the form of lazy val foo = (project in file("foo"))
without the settings.

• We recommend putting all project declarations and settings in the root
build.sbt file in order to keep all build definition under a single file.
However, it’s up to you.

Note: You cannot have a project subdirectory or project/*.scala files in the
sub-projects. foo/project/Build.scala would be ignored.

Task graph

Continuing from build definition, this page explains build.sbt definition in
more detail.

Rather than thinking of settings as key-value pairs, a better analogy would be
to think of it as a directed acyclic graph (DAG) of tasks where the edges denote
happens-before. Let’s call this the task graph.

Terminology

Let’s review the key terms before we dive in.

• Setting/Task expression: entry inside .settings(...).
• Key: Left hand side of a setting expression. It could be a SettingKey[A],

a TaskKey[A], or an InputKey[A].
• Setting: Defined by a setting expression with SettingKey[A]. The value

is calculated once during load.
• Task: Defined by a task expression with TaskKey[A]. The value is calcu-

lated each time it is invoked.

Declaring dependency to other tasks

In build.sbt DSL, we use .value method to express the dependency to another
task or setting. The value method is special and may only be called in the
argument to := (or, += or ++=, which we’ll see later).

As a first example, consider defining the scalacOptions that depends on update
and clean tasks. Here are the definitions of these keys (from Keys).

Note: The values calculated below are nonsensical for scalaOptions, and it’s
just for demonstration purpose only:

57

Basic-Def.html
../api/sbt/Keys$.html

val scalacOptions = taskKey[Seq[String]]("Options for the Scala compiler.")
val update = taskKey[UpdateReport]("Resolves and optionally retrieves dependencies, producing a report.")
val clean = taskKey[Unit]("Deletes files produced by the build, such as generated sources, compiled classes, and task caches.")

Here’s how we can rewire scalacOptions:

scalacOptions := {
val ur = update.value // update task happens-before scalacOptions
val x = clean.value // clean task happens-before scalacOptions
// ---- scalacOptions begins here ----
ur.allConfigurations.take(3)

}

update.value and clean.value declare task dependencies, whereas
ur.allConfigurations.take(3) is the body of the task.

.value is not a normal Scala method call. build.sbt DSL uses a macro to lift
these outside of the task body. Both update and clean tasks are completed
by the time task engine evaluates the opening { of scalacOptions
regardless of which line it appears in the body.

See the following example:

ThisBuild / organization := "com.example"
ThisBuild / scalaVersion := "2.12.18"
ThisBuild / version := "0.1.0-SNAPSHOT"

lazy val root = (project in file("."))
.settings(
name := "Hello",
scalacOptions := {

val out = streams.value // streams task happens-before scalacOptions
val log = out.log
log.info("123")
val ur = update.value // update task happens-before scalacOptions
log.info("456")
ur.allConfigurations.take(3)

}
)

Next, from sbt shell type scalacOptions:

> scalacOptions
[info] Updating {file:/xxx/}root...
[info] Resolving jline#jline;2.14.1 ...
[info] Done updating.
[info] 123
[info] 456
[success] Total time: 0 s, completed Jan 2, 2017 10:38:24 PM

58

Even though val ur = ... appears in between log.info("123") and
log.info("456") the evaluation of update task happens before either of them.

Here’s another example:

ThisBuild / organization := "com.example"
ThisBuild / scalaVersion := "2.12.18"
ThisBuild / version := "0.1.0-SNAPSHOT"

lazy val root = (project in file("."))
.settings(
name := "Hello",
scalacOptions := {

val ur = update.value // update task happens-before scalacOptions
if (false) {

val x = clean.value // clean task happens-before scalacOptions
}
ur.allConfigurations.take(3)

}
)

Next, from sbt shell type run then scalacOptions:

> run
[info] Updating {file:/xxx/}root...
[info] Resolving jline#jline;2.14.1 ...
[info] Done updating.
[info] Compiling 1 Scala source to /Users/eugene/work/quick-test/task-graph/target/scala-2.12/classes...
[info] Running example.Hello
hello
[success] Total time: 0 s, completed Jan 2, 2017 10:45:19 PM
> scalacOptions
[info] Updating {file:/xxx/}root...
[info] Resolving jline#jline;2.14.1 ...
[info] Done updating.
[success] Total time: 0 s, completed Jan 2, 2017 10:45:23 PM

Now if you check for target/scala-2.12/classes/, it won’t exist because
clean task has run even though it is inside the if (false).

Another important thing to note is that there’s no guarantee about the ordering
of update and clean tasks. They might run update then clean, clean then
update, or both in parallel.

Inlining .value calls

As explained above, .value is a special method that is used to express the
dependency to other tasks and settings. Until you’re familiar with build.sbt, we

59

recommend you put all .value calls at the top of the task body.

However, as you get more comfortable, you might wish to inline the .value
calls because it could make the task/setting more concise, and you don’t have
to come up with variable names.

We’ve inlined a few examples:

scalacOptions := {
val x = clean.value
update.value.allConfigurations.take(3)

}

Note whether .value calls are inlined, or placed anywhere in the task body,
they are still evaluated before entering the task body.

Inspecting the task

In the above example, scalacOptions has a dependency on update and clean
tasks. If you place the above in build.sbt and run the sbt interactive console,
then type inspect scalacOptions, you should see (in part):

> inspect scalacOptions
[info] Task: scala.collection.Seq[java.lang.String]
[info] Description:
[info] Options for the Scala compiler.
....
[info] Dependencies:
[info] *:clean
[info] *:update
....

This is how sbt knows which tasks depend on which other tasks.

For example, if you inspect tree compile you’ll see it depends on an-
other key incCompileSetup, which it in turn depends on other keys like
dependencyClasspath. Keep following the dependency chains and magic
happens.

> inspect tree compile
[info] compile:compile = Task[sbt.inc.Analysis]
[info] +-compile:incCompileSetup = Task[sbt.Compiler$IncSetup]
[info] | +-*/*:skip = Task[Boolean]
[info] | +-compile:compileAnalysisFilename = Task[java.lang.String]
[info] | | +-*/*:crossPaths = true
[info] | | +-{.}/*:scalaBinaryVersion = 2.12
[info] | |
[info] | +-*/*:compilerCache = Task[xsbti.compile.GlobalsCache]
[info] | +-*/*:definesClass = Task[scala.Function1[java.io.File, scala.Function1[java.lang.String, Boolean]]]

60

[info] | +-compile:dependencyClasspath = Task[scala.collection.Seq[sbt.Attributed[java.io.File]]]
[info] | | +-compile:dependencyClasspath::streams = Task[sbt.std.TaskStreams[sbt.Init$ScopedKey[_ <: Any]]]
[info] | | | +-*/*:streamsManager = Task[sbt.std.Streams[sbt.Init$ScopedKey[_ <: Any]]]
[info] | | |
[info] | | +-compile:externalDependencyClasspath = Task[scala.collection.Seq[sbt.Attributed[java.io.File]]]
[info] | | | +-compile:externalDependencyClasspath::streams = Task[sbt.std.TaskStreams[sbt.Init$ScopedKey[_ <: Any]]]
[info] | | | | +-*/*:streamsManager = Task[sbt.std.Streams[sbt.Init$ScopedKey[_ <: Any]]]
[info] | | | |
[info] | | | +-compile:managedClasspath = Task[scala.collection.Seq[sbt.Attributed[java.io.File]]]
[info] | | | | +-compile:classpathConfiguration = Task[sbt.Configuration]
[info] | | | | | +-compile:configuration = compile
[info] | | | | | +-*/*:internalConfigurationMap = <function1>
[info] | | | | | +-*:update = Task[sbt.UpdateReport]
[info] | | | | |
....

When you type compile sbt automatically performs an update, for example. It
Just Works because the values required as inputs to the compile computation
require sbt to do the update computation first.

In this way, all build dependencies in sbt are automatic rather than explicitly
declared. If you use a key’s value in another computation, then the computation
depends on that key.

Defining a task that depends on other settings

scalacOptions is a task key. Let’s say it’s been set to some values already, but
you want to filter out "-Xfatal-warnings" and "-deprecation" for non-2.12.

lazy val root = (project in file("."))
.settings(
name := "Hello",
organization := "com.example",
scalaVersion := "2.12.18",
version := "0.1.0-SNAPSHOT",
scalacOptions := List("-encoding", "utf8", "-Xfatal-warnings", "-deprecation", "-unchecked"),
scalacOptions := {

val old = scalacOptions.value
scalaBinaryVersion.value match {

case "2.12" => old
case _ => old filterNot (Set("-Xfatal-warnings", "-deprecation").apply)

}
}

)

Here’s how it should look on the sbt shell:

> show scalacOptions

61

[info] * -encoding
[info] * utf8
[info] * -Xfatal-warnings
[info] * -deprecation
[info] * -unchecked
[success] Total time: 0 s, completed Jan 2, 2017 11:44:44 PM
> ++2.11.8!
[info] Forcing Scala version to 2.11.8 on all projects.
[info] Reapplying settings...
[info] Set current project to Hello (in build file:/xxx/)
> show scalacOptions
[info] * -encoding
[info] * utf8
[info] * -unchecked
[success] Total time: 0 s, completed Jan 2, 2017 11:44:51 PM

Next, take these two keys (from Keys):

val scalacOptions = taskKey[Seq[String]]("Options for the Scala compiler.")
val checksums = settingKey[Seq[String]]("The list of checksums to generate and to verify for dependencies.")

Note: scalacOptions and checksums have nothing to do with each other.
They are just two keys with the same value type, where one is a task.

It is possible to compile a build.sbt that aliases scalacOptions to checksums,
but not the other way. For example, this is allowed:

// The scalacOptions task may be defined in terms of the checksums setting
scalacOptions := checksums.value

There is no way to go the other direction. That is, a setting key can’t depend
on a task key. That’s because a setting key is only computed once on project
load, so the task would not be re-run every time, and tasks expect to re-run
every time.

// Bad example: The checksums setting cannot be defined in terms of the scalacOptions task!
checksums := scalacOptions.value

Defining a setting that depends on other settings

In terms of the execution timing, we can think of the settings as a special tasks
that evaluate during loading time.

Consider defining the project organization to be the same as the project name.

// name our organization after our project (both are SettingKey[String])
organization := name.value

Here’s a realistic example. This rewires Compile / scalaSource key to a dif-
ferent directory only when scalaBinaryVersion is "2.11".

62

../api/sbt/Keys$.html

Compile / scalaSource := {
val old = (Compile / scalaSource).value
scalaBinaryVersion.value match {

case "2.11" => baseDirectory.value / "src-2.11" / "main" / "scala"
case _ => old

}
}

What’s the point of the build.sbt DSL?

We use the build.sbt domain-specific language(DSL) to construct a DAG of
settings and tasks. The setting expressions encode settings, tasks and the de-
pendencies among them.

This structure is common to Make (1976), Ant (2000), and Rake (2003).

Intro to Make

The basic Makefile syntax looks like the following:

target: dependencies
[tab] system command1
[tab] system command2

Given a target (the default target is named all),

1. Make checks if the target’s dependencies have been built, and builds any
of the dependencies that hasn’t been built yet.

2. Make runs the system commands in order.

Let’s take a look at a Makefile:

CC=g++
CFLAGS=-Wall

all: hello

hello: main.o hello.o
$(CC) main.o hello.o -o hello

%.o: %.cpp
$(CC) $(CFLAGS) -c $< -o $@

Running make, it will by default pick the target named all. The target lists
hello as its dependency, which hasn’t been built yet, so Make will build hello.

Next, Make checks if the hello target’s dependencies have been built yet. hello
lists two targets: main.o and hello.o. Once those targets are created using

63

https://en.wikipedia.org/wiki/Make_(software)
https://ant.apache.org/
https://ruby.github.io/rake/

the last pattern matching rule, only then the system command is executed to
link main.o and hello.o to hello.

If you’re just running make, you can focus on what you want as the target, and
the exact timing and commands necessary to build the intermediate products
are figured out by Make. We can think of this as dependency-oriented pro-
gramming, or flow-based programming. Make is actually considered a hybrid
system because while the DSL describes the task dependencies, the actions are
delegated to system commands.

Rake

This hybridity is continued for Make successors such as Ant, Rake, and sbt.
Take a look at the basic syntax for Rakefile:

task name: [:prereq1, :prereq2] do |t|
actions (may reference prereq as t.name etc)

end

The breakthrough made with Rake was that it used a programming language
to describe the actions instead of the system commands.

Benefits of hybrid flow-based programming

There are several motivation to organizing the build this way.

First is de-duplication. With flow-based programming, a task is executed only
once even when it is depended by multiple tasks. For example, even when multi-
ple tasks along the task graph depend on Compile / compile, the compilation
will be executed exactly once.

Second is parallel processing. Using the task graph, the task engine can schedule
mutually non-dependent tasks in parallel.

Third is the separation of concern and the flexibility. The task graph lets the
build user wire the tasks together in different ways, while sbt and plugins can
provide various features such as compilation and library dependency manage-
ment as functions that can be reused.

Summary

The core data structure of the build definition is a DAG of tasks, where the
edges denote happens-before relationships. build.sbt is a DSL designed to
express dependency-oriented programming, or flow-based programming, similar
to Makefile and Rakefile.

The key motivation for the flow-based programming is de-duplication, parallel
processing, and customizability.

64

Scopes

This page describes scopes. It assumes you’ve read and understood the previous
pages, build definition and task graph.

The whole story about keys

Previously we pretended that a key like name corresponded to one entry in sbt’s
map of key-value pairs. This was a simplification.

In truth, each key can have an associated value in more than one context, called
a scope.

Some concrete examples:

• if you have multiple projects (also called subprojects) in your build defini-
tion, a key can have a different value in each project.

• the compile key may have a different value for your main sources and
your test sources, if you want to compile them differently.

• the packageOptions key (which contains options for creating jar pack-
ages) may have different values when packaging class files (packageBin)
or packaging source code (packageSrc).

There is no single value for a given key name, because the value may differ
according to scope.

However, there is a single value for a given scoped key.

If you think about sbt processing a list of settings to generate a key-value map
describing the project, as discussed earlier, the keys in that key-value map
are scoped keys. Each setting defined in the build definition (for example in
build.sbt) applies to a scoped key as well.

Often the scope is implied or has a default, but if the defaults are wrong, you’ll
need to mention the desired scope in build.sbt.

Scope axes

A scope axis is a type constructor similar to Option[A], that is used to form a
component in a scope.

There are three scope axes:

• The subproject axis
• The dependency configuration axis
• The task axis

If you’re not familiar with the notion of axis, we can think of the RGB color
cube as an example:

65

Basic-Def.html
Task-Graph.html
Basic-Def.html
Basic-Def.html

color cube

In the RGB color model, all colors are represented by a point in the cube
whose axes correspond to red, green, and blue components encoded by a number.
Similarly, a full scope in sbt is formed by a tuple of a subproject, a configuration,
and a task value:

projA / Compile / console / scalacOptions

This is the slash syntax, introduced in sbt 1.1, for:

scalacOptions in (
Select(projA: Reference),
Select(Compile: ConfigKey),
Select(console.key)

)

Scoping by the subproject axis

If you put multiple projects in a single build, each project needs its own settings.
That is, keys can be scoped according to the project.

The project axis can also be set to ThisBuild, which means the “entire build”,
so a setting applies to the entire build rather than a single project. Build-level
settings are often used as a fallback when a project doesn’t define a project-
specific setting. We will discuss more on build-level settings later in this page.

Scoping by the configuration axis

A dependency configuration (or “configuration” for short) defines a graph of li-
brary dependencies, potentially with its own classpath, sources, generated pack-
ages, etc. The dependency configuration concept comes from Ivy, which sbt
used to use for managed dependencies Library Dependencies, and from Maven-
Scopes.

Some configurations you’ll see in sbt:

• Compile which defines the main build (src/main/scala).
• Test which defines how to build tests (src/test/scala).
• Runtime which defines the classpath for the run task.

By default, all the keys associated with compiling, packaging, and running are
scoped to a configuration and therefore may work differently in each configu-
ration. The most obvious examples are the task keys compile, package, and
run; but all the keys which affect those keys (such as sourceDirectories or
scalacOptions or fullClasspath) are also scoped to the configuration.

Another thing to note about a configuration is that it can extend other configu-
rations. The following figure shows the extension relationship among the most
common configurations.

66

Multi-Project.html
Library-Dependencies.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope

dependency configurations

Test and IntegrationTest extends Runtime; Runtime extends Compile;
CompileInternal extends Compile, Optional, and Provided.

Scoping by Task axis

Settings can affect how a task works. For example, the packageSrc task is
affected by the packageOptions setting.

To support this, a task key (such as packageSrc) can be a scope for another
key (such as packageOptions).

The various tasks that build a package (packageSrc, packageBin, packageDoc)
can share keys related to packaging, such as artifactName and packageOptions.
Those keys can have distinct values for each packaging task.

Zero scope component

Each scope axis can be filled in with an instance of the axis type (analogous to
Some(_)), or the axis can be filled in with the special value Zero. So we can
think of Zero as None.

Zero is a universal fallback for all scope axes, but its direct use should be
reserved to sbt and plugin authors in most cases.

Global is a scope that sets Zero to all axes: Zero / Zero / Zero. In other
words, Global / someKey is a shorthand for Zero / Zero / Zero / someKey.

Referring to scopes in a build definition

If you create a setting in build.sbt with a bare key, it will be scoped to (current
subproject / configuration Zero / task Zero):

lazy val root = (project in file("."))
.settings(
name := "hello"

)

Run sbt and inspect name to see that it’s provided by ProjectRef(uri("file:/private/tmp/hello/"),
"root") / name, that is, the project is ProjectRef(uri("file:/Users/xxx/hello/"),
"root"), and neither configuration nor task scope are shown (which means
Zero).

A bare key on the right hand side is also scoped to (current subproject / config-
uration Zero / task Zero):

organization := name.value

67

The types of any of the scope axes have been method enriched to have a /
operator. The argument to / can be a key or another scope axis. So for example,
though there’s no good reason to do this, you could have an instance of the name
key scoped to the Compile configuration:

Compile / name := "hello"

or you could set the name scoped to the packageBin task (pointless! just an
example):

packageBin / name := "hello"

or you could set the name with multiple scope axes, for example in the
packageBin task in the Compile configuration:

Compile / packageBin / name := "hello"

or you could use Global:

// same as Zero / Zero / Zero / concurrentRestrictions
Global / concurrentRestrictions := Seq(
Tags.limitAll(1)

)

(Global / concurrentRestrictions implicitly converts to Zero / Zero /
Zero / concurrentRestrictions, setting all axes to Zero scope compo-
nent; the task and configuration are already Zero by default, so here the
effect is to make the project Zero, that is, define Zero / Zero / Zero /
concurrentRestrictions rather than ProjectRef(uri("file:/tmp/hello/"),
"root") / Zero / Zero / concurrentRestrictions)

Referring to scoped keys from the sbt shell

On the command line and in the sbt shell, sbt displays (and parses) scoped keys
like this:

ref / Config / intask / key

• ref identifies the subproject axis. It could be <project-id>,
ProjectRef(uri("file:..."), "id"), or ThisBuild that denotes
the “entire build” scope.

• Config identifies the configuration axis using the capitalized Scala identi-
fier.

• intask identifies the task axis.
• key identifies the key being scoped.

Zero can appear for each axis.

If you omit part of the scoped key, it will be inferred as follows:

• the current project will be used if you omit the project.

68

• a key-dependent configuration will be auto-detected if you omit the con-
figuration or task.

For more details, see Interacting with the Configuration System.

Examples of scoped key notation in the sbt shell

• fullClasspath specifies just a key, so the default scopes are used: current
project, a key-dependent configuration, and Zero task scope.

• Test / fullClasspath specifies the configuration, so this is fullClasspath
in the Test configuration, with defaults for the other two scope axes.

• root / fullClasspath specifies the project root, where the project is
identified with the project id.

• root / Zero / fullClasspath specified the project root, and specifies
Zero for the configuration, rather than the default configuration.

• doc / fullClasspath specifies the fullClasspath key scoped to the doc
task, with the defaults for the project and configuration axes.

• ProjectRef(uri("file:/tmp/hello/"), "root") / Test / fullClasspath
specifies a project ProjectRef(uri("file:/tmp/hello/"), "root").
Also specifies configuration Test, leaves the default task axis.

• ThisBuild / version sets the subproject axis to “entire build” where the
build is ThisBuild, with the default configuration.

• Zero / fullClasspath sets the subproject axis to Zero, with the default
configuration.

• root / Compile / doc / fullClasspath sets all three scope axes.

Inspecting scopes

In sbt shell, you can use the inspect command to understand keys and their
scopes. Try inspect Test/fullClasspath:

$ sbt
sbt:Hello> inspect Test / fullClasspath
[info] Task: scala.collection.Seq[sbt.internal.util.Attributed[java.io.File]]
[info] Description:
[info] The exported classpath, consisting of build products and unmanaged and managed, internal and external dependencies.
[info] Provided by:
[info] ProjectRef(uri("file:/tmp/hello/"), "root") / Test / fullClasspath
[info] Defined at:
[info] (sbt.Classpaths.classpaths) Defaults.scala:1639
[info] Dependencies:
[info] Test / dependencyClasspath
[info] Test / exportedProducts
[info] Test / fullClasspath / streams
[info] Reverse dependencies:

69

Inspecting-Settings.html

[info] Test / testLoader
[info] Delegates:
[info] Test / fullClasspath
[info] Runtime / fullClasspath
[info] Compile / fullClasspath
[info] fullClasspath
[info] ThisBuild / Test / fullClasspath
[info] ThisBuild / Runtime / fullClasspath
[info] ThisBuild / Compile / fullClasspath
[info] ThisBuild / fullClasspath
[info] Zero / Test / fullClasspath
[info] Zero / Runtime / fullClasspath
[info] Zero / Compile / fullClasspath
[info] Global / fullClasspath
[info] Related:
[info] Compile / fullClasspath
[info] Runtime / fullClasspath

On the first line, you can see this is a task (as opposed to a setting, as ex-
plained in .sbt build definition). The value resulting from the task will have
type scala.collection.Seq[sbt.Attributed[java.io.File]].

“Provided by” points you to the scoped key that defines the value, in
this case ProjectRef(uri("file:/tmp/hello/"), "root") / Test /
fullClasspath (which is the fullClasspath key scoped to the Test configu-
ration and the ProjectRef(uri("file:/tmp/hello/"), "root") project).

“Dependencies” was discussed in detail in the previous page.

We’ll discuss “Delegates” later.

Try inspect fullClasspath (as opposed to the above example, inspect Test
/ fullClasspath) to get a sense of the difference. Because the configuration is
omitted, it is autodetected as Compile. inspect Compile / fullClasspath
should therefore look the same as inspect fullClasspath.

Try inspect ThisBuild / Zero / fullClasspath for another contrast.
fullClasspath is not defined in the Zero configuration scope by default.

Again, for more details, see Interacting with the Configuration System.

When to specify a scope

You need to specify the scope if the key in question is normally scoped. For
example, the compile task, by default, is scoped to Compile and Test configu-
rations, and does not exist outside of those scopes.

To change the value associated with the compile key, you need to write Compile
/ compile or Test / compile. Using plain compile would define a new com-

70

Basic-Def.html
Task-Graph.html
Inspecting-Settings.html

pile task scoped to the current project, rather than overriding the standard
compile tasks which are scoped to a configuration.

If you get an error like “Reference to undefined setting”, often you’ve failed to
specify a scope, or you’ve specified the wrong scope. The key you’re using may
be defined in some other scope. sbt will try to suggest what you meant as part
of the error message; look for “Did you mean Compile / compile?”

One way to think of it is that a name is only part of a key. In reality, all keys
consist of both a name, and a scope (where the scope has three axes). The
entire expression Compile / packageBin / packageOptions is a key name, in
other words. Simply packageOptions is also a key name, but a different one
(for keys with no slashes, a scope is implicitly assumed: current project, Zero
config, Zero task).

Build-level settings

An advanced technique for factoring out common settings across subprojects is
to define the settings scoped to ThisBuild.

If a key that is scoped to a particular subproject is not found, sbt will look for
it in ThisBuild as a fallback. Using the mechanism, we can define a build-level
default setting for frequently used keys such as version, scalaVersion, and
organization.

ThisBuild / organization := "com.example",
ThisBuild / scalaVersion := "2.12.18",
ThisBuild / version := "0.1.0-SNAPSHOT"

lazy val root = (project in file("."))
.settings(
name := "Hello",
publish / skip := true

)

lazy val core = (project in file("core"))
.settings(

// other settings
)

lazy val util = (project in file("util"))
.settings(

// other settings
)

For convenience, there is inThisBuild(...) function that will scope both
the key and the body of the setting expression to ThisBuild. Putting setting

71

expressions in there would be equivalent to prepending ThisBuild / where
possible.

Due to the nature of scope delegation that we will cover later, build-level settings
should be set only to a pure value or settings from either Global or ThisBuild
scoping.

Scope delegation

A scoped key may be undefined, if it has no value associated with it in its scope.

For each scope axis, sbt has a fallback search path made up of other scope values.
Typically, if a key has no associated value in a more-specific scope, sbt will try
to get a value from a more general scope, such as the ThisBuild scope.

This feature allows you to set a value once in a more general scope, allowing mul-
tiple more-specific scopes to inherit the value. We will discuss scope delegation
in detail later.

Appending values

Appending to previous values: += and ++=

Assignment with := is the simplest transformation, but keys have other methods
as well. If the T in SettingKey[T] is a sequence, i.e. the key’s value type is a
sequence, you can append to the sequence rather than replacing it.

• += will append a single element to the sequence.
• ++= will concatenate another sequence.

For example, the key Compile / sourceDirectories has a Seq[File] as its
value. By default this key’s value would include src/main/scala. If you wanted
to also compile source code in a directory called source (since you just have to
be nonstandard), you could add that directory:

Compile / sourceDirectories += new File("source")

Or, using the file() function from the sbt package for convenience:

Compile / sourceDirectories += file("source")

(file() just creates a new File.)

You could use ++= to add more than one directory at a time:

Compile / sourceDirectories ++= Seq(file("sources1"), file("sources2"))

Where Seq(a, b, c, ...) is standard Scala syntax to construct a sequence.

To replace the default source directories entirely, you use := of course:

72

Scope-Delegation.html
Scope-Delegation.html

Compile / sourceDirectories := Seq(file("sources1"), file("sources2"))

When settings are undefined

Whenever a setting uses :=, +=, or ++= to create a dependency on itself or
another key’s value, the value it depends on must exist. If it does not, sbt will
complain. It might say “Reference to undefined setting”, for example. When
this happens, be sure you’re using the key in the scope that defines it.

It’s possible to create cycles, which is an error; sbt will tell you if you do this.

Tasks based on other keys’ values

You can compute values of some tasks or settings to define or append a value
for another task. It’s done by using Def.task as an argument to :=, +=, or ++=.

As a first example, consider appending a source generator using the project base
directory and compilation classpath.

Compile / sourceGenerators += Def.task {
myGenerator(baseDirectory.value, (Compile / managedClasspath).value)

}

Appending with dependencies: += and ++=

Other keys can be used when appending to an existing setting or task, just like
they can for assigning with :=.

For example, say you have a coverage report named after the project, and you
want to add it to the files removed by clean:

cleanFiles += file("coverage-report-" + name.value + ".txt")

Scope delegation (.value lookup)

This page describes scope delegation. It assumes you’ve read and understood
the previous pages, build definition and scopes.

Now that we’ve covered all the details of scoping, we can explain the .value
lookup in detail. It’s ok to skip this section if this is your first time reading this
page.

To summarize what we’ve learned so far:

• A scope is a tuple of components in three axes: the subproject axis, the
configuration axis, and the task axis.

• There’s a special scope component Zero for any of the scope axes.

73

Scopes.html
Basic-Def.html
Scopes.html

• There’s a special scope component ThisBuild for the subprojects axis
only.

• Test extends Runtime, and Runtime extends Compile configuration.
• A key placed in build.sbt is scoped to ${current subproject} / Zero

/ Zero by default.
• A key can be scoped using / operator.

Now let’s suppose we have the following build definition:

lazy val foo = settingKey[Int]("")
lazy val bar = settingKey[Int]("")

lazy val projX = (project in file("x"))
.settings(
foo := {
(Test / bar).value + 1

},
Compile / bar := 1

)

Inside of foo’s setting body a dependency on the scoped key Test / bar is
declared. However, despite Test / bar being undefined in projX, sbt is still
able to resolve Test / bar to another scoped key, resulting in foo initialized
as 2.

sbt has a well-defined fallback search path called scope delegation. This feature
allows you to set a value once in a more general scope, allowing multiple more-
specific scopes to inherit the value.

Scope delegation rules

Here are the rules for scope delegation:

• Rule 1: Scope axes have the following precedence: the subproject axis, the
configuration axis, and then the task axis.

• Rule 2: Given a scope, delegate scopes are searched by substituting the
task axis in the following order: the given task scoping, and then Zero,
which is non-task scoped version of the scope.

• Rule 3: Given a scope, delegate scopes are searched by substituting the
configuration axis in the following order: the given configuration, its par-
ents, their parents and so on, and then Zero (same as unscoped configu-
ration axis).

• Rule 4: Given a scope, delegate scopes are searched by substituting the
subproject axis in the following order: the given subproject, ThisBuild,
and then Zero.

• Rule 5: A delegated scoped key and its dependent settings/tasks are eval-
uated without carrying the original context.

74

We will look at each rule in the rest of this page.

Rule 1: Scope axis precedence

• Rule 1: Scope axes have the following precedence: the subproject axis, the
configuration axis, and then the task axis.

In other words, given two scope candidates, if one has more specific value on
the subproject axis, it will always win regardless of the configuration or the
task scoping. Similarly, if subprojects are the same, one with more specific
configuration value will always win regardless of the task scoping. We will see
more rules to define more specific.

Rule 2: The task axis delegation

• Rule 2: Given a scope, delegate scopes are searched by substituting the
task axis in the following order: the given task scoping, and then Zero,
which is non-task scoped version of the scope.

Here we have a concrete rule for how sbt will generate delegate scopes given a
key. Remember, we are trying to show the search path given an arbitrary (xxx
/ yyy).value.

Exercise A: Given the following build definition:

lazy val projA = (project in file("a"))
.settings(
name := {
"foo-" + (packageBin / scalaVersion).value

},
scalaVersion := "2.11.11"

)

What is the value of projA / name?

1. "foo-2.11.11"
2. "foo-2.12.18"
3. something else?

The answer is "foo-2.11.11". Inside of .settings(...), scalaVersion is au-
tomatically scoped to projA / Zero / Zero, so packageBin / scalaVersion
becomes projA / Zero / packageBin / scalaVersion. That particular
scoped key is undefined. By using Rule 2, sbt will substitute the task axis to
Zero as projA / Zero / Zero (or projA / scalaVersion). That scoped key
is defined to be "2.11.11".

75

Rule 3: The configuration axis search path

• Rule 3: Given a scope, delegate scopes are searched by substituting the
configuration axis in the following order: the given configuration, its par-
ents, their parents and so on, and then Zero (same as unscoped configu-
ration axis).

The example for that is projX that we saw earlier:

lazy val foo = settingKey[Int]("")
lazy val bar = settingKey[Int]("")

lazy val projX = (project in file("x"))
.settings(
foo := {
(Test / bar).value + 1

},
Compile / bar := 1

)

If we write out the full scope again, it’s projX / Test / Zero. Also recall that
Test extends Runtime, and Runtime extends Compile.

Test / bar is undefined, but due to Rule 3 sbt will look for bar scoped in
projX / Test / Zero, projX / Runtime / Zero, and then projX / Compile
/ Zero. The last one is found, which is Compile / bar.

Rule 4: The subproject axis search path

• Rule 4: Given a scope, delegate scopes are searched by substituting the
subproject axis in the following order: the given subproject, ThisBuild,
and then Zero.

Exercise B: Given the following build definition:

ThisBuild / organization := "com.example"

lazy val projB = (project in file("b"))
.settings(
name := "abc-" + organization.value,
organization := "org.tempuri"

)

What is the value of projB / name?

1. "abc-com.example"
2. "abc-org.tempuri"
3. something else?

76

The answer is abc-org.tempuri. So based on Rule 4, the first search path
is organization scoped to projB / Zero / Zero, which is defined in projB
as "org.tempuri". This has higher precedence than the build-level setting
ThisBuild / organization.

Scope axis precedence, again

Exercise C: Given the following build definition:

ThisBuild / packageBin / scalaVersion := "2.12.2"

lazy val projC = (project in file("c"))
.settings(
name := {
"foo-" + (packageBin / scalaVersion).value

},
scalaVersion := "2.11.11"

)

What is value of projC / name?

1. "foo-2.12.2"
2. "foo-2.11.11"
3. something else?

The answer is foo-2.11.11. scalaVersion scoped to projC / Zero /
packageBin is undefined. Rule 2 finds projC / Zero / Zero. Rule 4 finds
ThisBuild / Zero / packageBin. In this case Rule 1 dictates that more
specific value on the subproject axis wins, which is projC / Zero / Zero that
is defined to "2.11.11".

Exercise D: Given the following build definition:

ThisBuild / scalacOptions += "-Ywarn-unused-import"

lazy val projD = (project in file("d"))
.settings(
test := {
println((Compile / console / scalacOptions).value)

},
console / scalacOptions -= "-Ywarn-unused-import",
Compile / scalacOptions := scalacOptions.value // added by sbt

)

What would you see if you ran projD/test?

1. List()
2. List(-Ywarn-unused-import)
3. something else?

77

The answer is List(-Ywarn-unused-import). Rule 2 finds projD / Compile
/ Zero, Rule 3 finds projD / Zero / console, and Rule 4 finds ThisBuild
/ Zero / Zero. Rule 1 selects projD / Compile / Zero because it has the
subproject axis projD, and the configuration axis has higher precedence over
the task axis.

Next, Compile / scalacOptions refers to scalacOptions.value, we next
need to find a delegate for projD / Zero / Zero. Rule 4 finds ThisBuild /
Zero / Zero and thus it resolves to List(-Ywarn-unused-import).

Inspect command lists the delegates

You might want to look up quickly what is going on. This is where inspect
can be used.

sbt:projd> inspect projD / Compile / console / scalacOptions
[info] Task: scala.collection.Seq[java.lang.String]
[info] Description:
[info] Options for the Scala compiler.
[info] Provided by:
[info] ProjectRef(uri("file:/tmp/projd/"), "projD") / Compile / scalacOptions
[info] Defined at:
[info] /tmp/projd/build.sbt:9
[info] Reverse dependencies:
[info] projD / test
[info] projD / Compile / console
[info] Delegates:
[info] projD / Compile / console / scalacOptions
[info] projD / Compile / scalacOptions
[info] projD / console / scalacOptions
[info] projD / scalacOptions
[info] ThisBuild / Compile / console / scalacOptions
[info] ThisBuild / Compile / scalacOptions
[info] ThisBuild / console / scalacOptions
[info] ThisBuild / scalacOptions
[info] Zero / Compile / console / scalacOptions
[info] Zero / Compile / scalacOptions
[info] Zero / console / scalacOptions
[info] Global / scalacOptions

Note how “Provided by” shows that projD / Compile / console /
scalacOptions is provided by projD / Compile / scalacOptions. Also
under “Delegates”, all of the possible delegate candidates listed in the order of
precedence!

• All the scopes with projD scoping on the subproject axis are listed first,
then ThisBuild, and Zero.

78

• Within a subproject, scopes with Compile scoping on the configuration
axis are listed first, then falls back to Zero.

• Finally, the task axis scoping lists the given task scoping console / and
the one without.

.value lookup vs dynamic dispatch

• Rule 5: A delegated scoped key and its dependent settings/tasks are eval-
uated without carrying the original context.

Note that scope delegation feels similar to class inheritance in an object-oriented
language, but there’s a difference. In an OO language like Scala if there’s a
method named drawShape on a trait Shape, its subclasses can override the
behavior even when drawShape is used by other methods in the Shape trait,
which is called dynamic dispatch.

In sbt, however, scope delegation can delegate a scope to a more general scope,
like a project-level setting to a build-level settings, but that build-level setting
cannot refer to the project-level setting.

Exercise E: Given the following build definition:

lazy val root = (project in file("."))
.settings(
inThisBuild(List(
organization := "com.example",
scalaVersion := "2.12.2",
version := scalaVersion.value + "_0.1.0"

)),
name := "Hello"

)

lazy val projE = (project in file("e"))
.settings(
scalaVersion := "2.11.11"

)

What will projE / version return?

1. "2.12.2_0.1.0"
2. "2.11.11_0.1.0"
3. something else?

The answer is 2.12.2_0.1.0. projE / version delegates to ThisBuild /
version, which depends on ThisBuild / scalaVersion. Because of this rea-
son, build level setting should be limited mostly to simple value assignments.

Exercise F: Given the following build definition:

79

ThisBuild / scalacOptions += "-D0"
scalacOptions += "-D1"

lazy val projF = (project in file("f"))
.settings(
compile / scalacOptions += "-D2",
Compile / scalacOptions += "-D3",
Compile / compile / scalacOptions += "-D4",
test := {
println("bippy" + (Compile / compile / scalacOptions).value.mkString)

}
)

What will projF / test show?

1. "bippy-D4"
2. "bippy-D2-D4"
3. "bippy-D0-D3-D4"
4. something else?

The answer is "bippy-D0-D3-D4". This is a variation of an exercise originally
created by Paul Phillips.

It’s a great demonstration of all the rules because someKey += "x" expands to

someKey := {
val old = someKey.value
old :+ "x"

}

Retrieving the old value would cause delegation, and due to Rule 5, it will go
to another scoped key. Let’s get rid of += first, and annotate the delegates for
old values:

ThisBuild / scalacOptions := {
// Global / scalacOptions <- Rule 4
val old = (ThisBuild / scalacOptions).value
old :+ "-D0"

}

scalacOptions := {
// ThisBuild / scalacOptions <- Rule 4
val old = scalacOptions.value
old :+ "-D1"

}

lazy val projF = (project in file("f"))
.settings(
compile / scalacOptions := {

80

https://gist.github.com/paulp/923154ab2d61882195cdea47483592ca

// ThisBuild / scalacOptions <- Rules 2 and 4
val old = (compile / scalacOptions).value
old :+ "-D2"

},
Compile / scalacOptions := {
// ThisBuild / scalacOptions <- Rules 3 and 4
val old = (Compile / scalacOptions).value
old :+ "-D3"

},
Compile / compile / scalacOptions := {
// projF / Compile / scalacOptions <- Rules 1 and 2
val old = (Compile / compile / scalacOptions).value
old :+ "-D4"

},
test := {
println("bippy" + (Compile / compile / scalacOptions).value.mkString)

}
)

This becomes:

ThisBuild / scalacOptions := {
Nil :+ "-D0"

}

scalacOptions := {
List("-D0") :+ "-D1"

}

lazy val projF = (project in file("f"))
.settings(
compile / scalacOptions := List("-D0") :+ "-D2",
Compile / scalacOptions := List("-D0") :+ "-D3",
Compile / compile / scalacOptions := List("-D0", "-D3") :+ "-D4",
test := {
println("bippy" + (Compile / compile / scalacOptions).value.mkString)

}
)

Library dependencies

This page assumes you’ve already read the earlier Getting Started pages, in
particular build definition, scopes, and task graph.

Library dependencies can be added in two ways:

• unmanaged dependencies are jars dropped into the lib directory

81

Basic-Def.html
Scopes.html
Task-Graph.html

• managed dependencies are configured in the build definition and down-
loaded automatically from repositories

Unmanaged dependencies

Most people use managed dependencies instead of unmanaged. But unmanaged
can be simpler when starting out.

Unmanaged dependencies work like this: add jars to lib and they will be placed
on the project classpath. Not much else to it!

You can place test jars such as ScalaCheck, Specs2, and ScalaTest in lib as
well.

Dependencies in lib go on all the classpaths (for compile, test, run,
and console). If you wanted to change the classpath for just one of
those, you would adjust Compile / dependencyClasspath or Runtime /
dependencyClasspath for example.

There’s nothing to add to build.sbt to use unmanaged dependencies, though
you could change the unmanagedBase key if you’d like to use a different directory
rather than lib.

To use custom_lib instead of lib:

unmanagedBase := baseDirectory.value / "custom_lib"

baseDirectory is the project’s root directory, so here you’re changing
unmanagedBase depending on baseDirectory using the special value method
as explained in task graph.

There’s also an unmanagedJars task which lists the jars from the unmanagedBase
directory. If you wanted to use multiple directories or do something else complex,
you might need to replace the whole unmanagedJars task with one that does
something else, e.g. empty the list for Compile configuration regardless of the
files in lib directory:

Compile / unmanagedJars := Seq.empty[sbt.Attributed[java.io.File]]

Managed Dependencies

sbt uses Coursier to implement managed dependencies, so if you’re familiar with
Coursier, Apache Ivy or Maven, you won’t have much trouble.

The libraryDependencies key

Most of the time, you can simply list your dependencies in the setting
libraryDependencies. It’s also possible to write a Maven POM file or Ivy

82

https://scalacheck.org/
http://specs2.org
https://www.scalatest.org/
Task-Graph.html
https://get-coursier.io/

configuration file to externally configure your dependencies, and have sbt use
those external configuration files. You can learn more about that here.

Declaring a dependency looks like this, where groupId, artifactId, and
revision are strings:

libraryDependencies += groupID % artifactID % revision

or like this, where configuration can be a string or a Configuration value
(such as Test):

libraryDependencies += groupID % artifactID % revision % configuration

libraryDependencies is declared in Keys like this:

val libraryDependencies = settingKey[Seq[ModuleID]]("Declares managed dependencies.")

The % methods create ModuleID objects from strings, then you add those
ModuleID to libraryDependencies.

Of course, sbt (via Coursier) has to know where to download the module. If
your module is in one of the default repositories sbt comes with, this will just
work. For example, Apache Derby is in the standard Maven2 repository:

libraryDependencies += "org.apache.derby" % "derby" % "10.4.1.3"

If you type that in build.sbt and then update, sbt should download Derby to
the Coursier cache. (By the way, update is a dependency of compile so there’s
no need to manually type update most of the time.)

Of course, you can also use ++= to add a list of dependencies all at once:

libraryDependencies ++= Seq(
groupID % artifactID % revision,
groupID % otherID % otherRevision

)

In rare cases you might find reasons to use := with libraryDependencies as
well.

Getting the right Scala version with %%

If you use organization %% moduleName % version rather than organization
% moduleName % version (the difference is the double %% after the
organization), sbt will add your project’s binary Scala version to the
artifact name. This is just a shortcut. You could write this without the %%:

libraryDependencies += "org.scala-stm" % "scala-stm_2.13" % "0.9.1"

Assuming the scalaVersion for your build is 2.13.12, the following is identical
(note the double %% after "org.scala-stm"):

libraryDependencies += "org.scala-stm" %% "scala-stm" % "0.9.1"

83

../docs/Library-Management.html#External+Maven+or+Ivy
../api/sbt/Keys$.html#libraryDependencies:sbt.SettingKey%5BSeq%5Bsbt.librarymanagement.ModuleID%5D%5D
https://get-coursier.io/docs/cache

The idea is that many dependencies are compiled for multiple Scala versions,
and you’d like to get the one that matches your project to ensure binary com-
patibility.

See Cross Building for some more detail on this.

Ivy revisions

The version in organization % moduleName % version does not have to be
a single fixed version. Ivy can select the latest revision of a module accord-
ing to constraints you specify. Instead of a fixed revision like "1.6.1", you
specify "latest.integration", "2.9.+", or "[1.0,)". See the Ivy revisions
documentation for details.

Occasionally a Maven “version range” is used to specify a dependency (transitive
or otherwise), such as [1.3.0,). If a specific version of the dependency is
declared in the build, and it satisfies the range, then sbt will use the specified
version. Otherwise, Coursier could go out to the Internet to find the latest
version. This would result to a surprising behavior where the effective version
keeps changing over time, even though there’s a specified version of the library
that satisfies the range condition.

Maven version ranges will be replaced with its lower bound if the build so that
when a satisfactory version is found in the dependency graph it will be used. You
can disable this behavior using the JVM flag -Dsbt.modversionrange=false.

Resolvers

Not all packages live on the same server; sbt uses the standard Maven2 repos-
itory by default. If your dependency isn’t on one of the default repositories,
you’ll have to add a resolver to help Ivy find it.

To add an additional repository, use

resolvers += name at location

with the special at between two strings.

For example:

resolvers += "Sonatype OSS Snapshots" at "https://oss.sonatype.org/content/repositories/snapshots"

The resolvers key is defined in Keys like this:

val resolvers = settingKey[Seq[Resolver]]("The user-defined additional resolvers for automatically managed dependencies.")

The at method creates a Resolver object from two strings.

sbt can search your local Maven repository if you add it as a repository:

resolvers += "Local Maven Repository" at "file://"+Path.userHome.absolutePath+"/.m2/repository"

84

Cross-Build.html
https://ant.apache.org/ivy/history/2.3.0/ivyfile/dependency.html#revision
../api/sbt/Keys$.html#resolvers:sbt.SettingKey%5BSeq%5Bsbt.librarymanagement.Resolver%5D%5D

or, for convenience:

resolvers += Resolver.mavenLocal

See Resolvers for details on defining other types of repositories.

Overriding default resolvers

resolvers does not contain the default resolvers; only additional ones added
by your build definition.

sbt combines resolvers with some default repositories to form externalResolvers.

Therefore, to change or remove the default resolvers, you would need to override
externalResolvers instead of resolvers.

Per-configuration dependencies

Often a dependency is used by your test code (in src/test/scala, which is
compiled by the Test configuration) but not your main code.

If you want a dependency to show up in the classpath only for the Test config-
uration and not the Compile configuration, add % "test" like this:

libraryDependencies += "org.apache.derby" % "derby" % "10.4.1.3" % "test"

You may also use the type-safe version of Test configuration as follows:

libraryDependencies += "org.apache.derby" % "derby" % "10.4.1.3" % Test

Now, if you type show Compile/dependencyClasspath at the sbt inter-
active prompt, you should not see the derby jar. But if you type show
Test/dependencyClasspath, you should see the derby jar in the list.

Typically, test-related dependencies such as ScalaCheck, Specs2, and ScalaTest
would be defined with % "test".

There are more details and tips-and-tricks related to library dependencies on
this page.

Using plugins

Please read the earlier pages in the Getting Started Guide first, in particular you
need to understand build.sbt, task graph, library dependencies, before reading
this page.

85

Resolvers.html
https://scalacheck.org/
http://specs2.org
https://www.scalatest.org/
Library-Management.html
Basic-Def.html
Task-Graph.html
Library-Dependencies.html

What is a plugin?

A plugin extends the build definition, most commonly by adding new settings.
The new settings could be new tasks. For example, a plugin could add a
codeCoverage task which would generate a test coverage report.

Declaring a plugin

If your project is in directory hello, and you’re adding sbt-site plugin to the
build definition, create hello/project/site.sbt and declare the plugin depen-
dency by passing the plugin’s Ivy module ID to addSbtPlugin:

addSbtPlugin("com.typesafe.sbt" % "sbt-site" % "0.7.0")

If you’re adding sbt-assembly, create hello/project/assembly.sbt with the
following:

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.11.2")

Not every plugin is located on one of the default repositories and a plugin’s
documentation may instruct you to also add the repository where it can be
found:

resolvers ++= Resolver.sonatypeOssRepos("public")

Plugins usually provide settings that get added to a project to enable the plugin’s
functionality. This is described in the next section.

Enabling and disabling auto plugins

A plugin can declare that its settings be automatically added to the build defi-
nition, in which case you don’t have to do anything to add them.

As of sbt 0.13.5, there is a new auto plugins feature that enables plugins to
automatically, and safely, ensure their settings and dependencies are on a project.
Many auto plugins should have their default settings automatically, however
some may require explicit enablement.

If you’re using an auto plugin that requires explicit enablement, then you have
to add the following to your build.sbt:

lazy val util = (project in file("util"))
.enablePlugins(FooPlugin, BarPlugin)
.settings(
name := "hello-util"

)

The enablePlugins method allows projects to explicitly define the auto plugins
they wish to consume.

86

Plugins.html

Projects can also exclude plugins using the disablePlugins method. For ex-
ample, if we wish to remove the IvyPlugin settings from util, we modify our
build.sbt as follows:

lazy val util = (project in file("util"))
.enablePlugins(FooPlugin, BarPlugin)
.disablePlugins(plugins.IvyPlugin)
.settings(
name := "hello-util"

)

Auto plugins should document whether they need to be explicitly enabled. If
you’re curious which auto plugins are enabled for a given project, just run the
plugins command on the sbt console.

For example:

> plugins
In file:/home/jsuereth/projects/sbt/test-ivy-issues/

sbt.plugins.IvyPlugin: enabled in scala-sbt-org
sbt.plugins.JvmPlugin: enabled in scala-sbt-org
sbt.plugins.CorePlugin: enabled in scala-sbt-org
sbt.plugins.JUnitXmlReportPlugin: enabled in scala-sbt-org

Here, the plugins output is showing that the sbt default plugins are all enabled.
sbt’s default settings are provided via three plugins:

1. CorePlugin: Provides the core parallelism controls for tasks.
2. IvyPlugin: Provides the mechanisms to publish/resolve modules.
3. JvmPlugin: Provides the mechanisms to compile/test/run/package

Java/Scala projects.

In addition, JUnitXmlReportPlugin provides an experimental support for gen-
erating junit-xml.

Older non-auto plugins often require settings to be added explicitly, so that
multi-project build could have different types of projects. The plugin docu-
mentation will indicate how to configure it, but typically for older plugins this
involves adding the base settings for the plugin and customizing as necessary.

For example, for the sbt-site plugin, create site.sbt with the following content

site.settings

to enable it for that project.

If the build defines multiple projects, instead add it directly to the project:

// don't use the site plugin for the `util` project
lazy val util = (project in file("util"))

// enable the site plugin for the `core` project

87

Multi-Project.html

lazy val core = (project in file("core"))
.settings(site.settings)

Global plugins

Plugins can be installed for all your projects at once by declaring them in
$HOME/.sbt/1.0/plugins/. $HOME/.sbt/1.0/plugins/ is an sbt project
whose classpath is exported to all sbt build definition projects. Roughly
speaking, any .sbt or .scala files in $HOME/.sbt/1.0/plugins/ behave as if
they were in the project/ directory for all projects.

You can create $HOME/.sbt/1.0/plugins/build.sbt and put addSbtPlugin()
expressions in there to add plugins to all your projects at once. Because doing so
would increase the dependency on the machine environment, this feature should
be used sparingly. See Best Practices.

Available Plugins

There’s a list of available plugins.

Some especially popular plugins are:

• those for IDEs (to import an sbt project into your IDE)
• those supporting web frameworks, such as xsbt-web-plugin.

For more details, including ways of developing plugins, see Plugins. For best
practices, see Plugins-Best-Practices.

Custom settings and tasks

This page gets you started creating your own settings and tasks.

To understand this page, be sure you’ve read earlier pages in the Getting Started
Guide, especially build.sbt and task graph.

Defining a key

Keys is packed with examples illustrating how to define keys. Most of the keys
are implemented in Defaults.

Keys have one of three types. SettingKey and TaskKey are described in .sbt
build definition. Read about InputKey on the Input Tasks page.

Some examples from Keys:

val scalaVersion = settingKey[String]("The version of Scala used for building.")
val clean = taskKey[Unit]("Deletes files produced by the build, such as generated sources, compiled classes, and task caches.")

88

../docs/Best-Practices.html#global-vs-local-plugins
Communitiy-Plugins.html
https://github.com/earldouglas/xsbt-web-plugin
Plugins.html
Plugins-Best-Practices.html
Basic-Def.html
Task-Graph.html
../api/sbt/Keys$.html
https://github.com/sbt/sbt/blob/develop/main/src/main/scala/sbt/Defaults.scala
Basic-Def.html
Basic-Def.html
Input-Tasks.html
../api/sbt/Keys$.html

The key constructors have two string parameters: the name of the key
("scalaVersion") and a documentation string ("The version of scala
used for building.").

Remember from .sbt build definition that the type parameter T in
SettingKey[T] indicates the type of value a setting has. T in TaskKey[T]
indicates the type of the task’s result. Also remember from .sbt build definition
that a setting has a fixed value until project reload, while a task is re-computed
for every “task execution” (every time someone types a command at the sbt
interactive prompt or in batch mode).

Keys may be defined in an .sbt file, a .scala file, or in an auto plugin. Any vals
found under autoImport object of an enabled auto plugin will be imported
automatically into your .sbt files.

Implementing a task

Once you’ve defined a key for your task, you’ll need to complete it with a task
definition. You could be defining your own task, or you could be planning to
redefine an existing task. Either way looks the same; use := to associate some
code with the task key:

val sampleStringTask = taskKey[String]("A sample string task.")
val sampleIntTask = taskKey[Int]("A sample int task.")

ThisBuild / organization := "com.example"
ThisBuild / version := "0.1.0-SNAPSHOT"
ThisBuild / scalaVersion := "2.12.18"

lazy val library = (project in file("library"))
.settings(

sampleStringTask := System.getProperty("user.home"),
sampleIntTask := {

val sum = 1 + 2
println("sum: " + sum)
sum

}
)

If the task has dependencies, you’d reference their value using value, as dis-
cussed in task graph.

The hardest part about implementing tasks is often not sbt-specific; tasks are
just Scala code. The hard part could be writing the “body” of your task that
does whatever you’re trying to do. For example, maybe you’re trying to format
HTML in which case you might want to use an HTML library (you would add a

89

Basic-Def.html
Basic-Def.html
Basic-Def.html
Organizing-Build.html
Using-Plugins.html
Task-Graph.html
Using-Plugins.html
Using-Plugins.html

library dependency to your build definition and write code based on the HTML
library, perhaps).

sbt has some utility libraries and convenience functions, in particular you can
often use the convenient APIs in IO to manipulate files and directories.

Execution semantics of tasks

When depending on other tasks from a custom task using value, an important
detail to note is the execution semantics of the tasks. By execution semantics,
we mean exactly when these tasks are evaluated.

If we take sampleIntTask for instance, each line in the body of the task should
be strictly evaluated one after the other. That is sequential semantics:

sampleIntTask := {
val sum = 1 + 2 // first
println("sum: " + sum) // second
sum // third

}

In reality JVM may inline the sum to 3, but the observable effect of the task
will remain identical as if each line were executed one after the other.

Now suppose we define two more custom tasks startServer and stopServer,
and modify sampleIntTask as follows:

val startServer = taskKey[Unit]("start server")
val stopServer = taskKey[Unit]("stop server")
val sampleIntTask = taskKey[Int]("A sample int task.")
val sampleStringTask = taskKey[String]("A sample string task.")

ThisBuild / organization := "com.example"
ThisBuild / version := "0.1.0-SNAPSHOT"
ThisBuild / scalaVersion := "2.12.18"

lazy val library = (project in file("library"))
.settings(

startServer := {
println("starting...")
Thread.sleep(500)

},
stopServer := {
println("stopping...")
Thread.sleep(500)

},
sampleIntTask := {
startServer.value

90

Using-Plugins.html
../api/sbt/io/IO$.html

val sum = 1 + 2
println("sum: " + sum)
stopServer.value // THIS WON'T WORK
sum

},
sampleStringTask := {
startServer.value
val s = sampleIntTask.value.toString
println("s: " + s)
s

}
)

Running sampleIntTask from sbt interactive prompt results to the following:

> sampleIntTask
stopping...
starting...
sum: 3
[success] Total time: 1 s, completed Dec 22, 2014 5:00:00 PM

To review what happened, let’s look at a graphical notation of sampleIntTask:

task-dependency

Unlike plain Scala method calls, invoking value method on tasks will not
be evaluated strictly. Instead, they simply act as placeholders to denote
that sampleIntTask depends on startServer and stopServer tasks. When
sampleIntTask is invoked by you, sbt’s tasks engine will:

• evaluate the task dependencies before evaluating sampleIntTask (partial
ordering)

• try to evaluate task dependencies in parallel if they are independent (par-
allelization)

• each task dependency will be evaluated once and only once per command
execution (deduplication)

Deduplication of task dependencies

To demonstrate the last point, we can run sampleStringTask from sbt interac-
tive prompt.

> sampleStringTask
stopping...
starting...
sum: 3
s: 3
[success] Total time: 1 s, completed Dec 22, 2014 5:30:00 PM

91

Because sampleStringTask depends on both startServer and sampleIntTask
task, and sampleIntTask also depends on startServer task, it appears twice
as task dependency. If this was a plain Scala method call it would be evaluated
twice, but since value is just denoting a task dependency, it will be evaluated
once. The following is a graphical notation of sampleStringTask’s evaluation:

task-dependency

If we did not deduplicate the task dependencies, we will end up compiling test
source code many times when test task is invoked since Test / compile ap-
pears many times as a task dependency of Test / test.

Cleanup task

How should one implement stopServer task? The notion of cleanup task does
not fit into the execution model of tasks because tasks are about tracking depen-
dencies. The last operation should become the task that depends on other inter-
mediate tasks. For instance stopServer should depend on sampleStringTask,
at which point stopServer should be the sampleStringTask.

lazy val library = (project in file("library"))
.settings(

startServer := {
println("starting...")
Thread.sleep(500)

},
sampleIntTask := {
startServer.value
val sum = 1 + 2
println("sum: " + sum)
sum

},
sampleStringTask := {
startServer.value
val s = sampleIntTask.value.toString
println("s: " + s)
s

},
sampleStringTask := {

val old = sampleStringTask.value
println("stopping...")
Thread.sleep(500)
old

}
)

To demonstrate that it works, run sampleStringTask from the interactive

92

prompt:

> sampleStringTask
starting...
sum: 3
s: 3
stopping...
[success] Total time: 1 s, completed Dec 22, 2014 6:00:00 PM

task-dependency

Use plain Scala

Another way of making sure that something happens after some other thing is
to use Scala. Implement a simple function in project/ServerUtil.scala for
example, and you can write:

sampleIntTask := {
ServerUtil.startServer
try {

val sum = 1 + 2
println("sum: " + sum)

} finally {
ServerUtil.stopServer

}
sum

}

Since plain method calls follow sequential semantics, everything happens in
order. There’s no deduplication, so you have to be careful about that.

Turn them into plugins

If you find you have a lot of custom code, consider moving it to a plugin for
re-use across multiple builds.

It’s very easy to create a plugin, as teased earlier and discussed at more length
here.

This page has been a quick taste; there’s much much more about custom tasks
on the Tasks page.

Organizing the build

This page discusses the organization of the build structure.

93

Using-Plugins.html
Plugins.html
Plugins.html
Tasks.html

Please read the earlier pages in the Getting Started Guide first, in particular
you need to understand build.sbt, task graph, Library dependencies, and Multi-
project builds before reading this page.

sbt is recursive

build.sbt conceals how sbt really works. sbt builds are defined with Scala code.
That code, itself, has to be built. What better way than with sbt?

The project directory is another build inside your build, which knows how to
build your build. To distinguish the builds, we sometimes use the term proper
build to refer to your build, and meta-build to refer to the build in project.
The projects inside the metabuild can do anything any other project can do.
Your build definition is an sbt project.

And the turtles go all the way down. If you like, you can tweak the build defini-
tion of the build definition project, by creating a project/project/ directory.

Here’s an illustration.

hello/ # your build's root project's base directory

Hello.scala # a source file in your build's root project
(could be in src/main/scala too)

build.sbt # build.sbt is part of the source code for
meta-build's root project inside project/;
the build definition for your build

project/ # base directory of meta-build's root project

Dependencies.scala # a source file in the meta-build's root project,
that is, a source file in the build definition
the build definition for your build

assembly.sbt # this is part of the source code for
meta-meta-build's root project in project/project;
build definition's build definition

project/ # base directory of meta-meta-build's root project;
the build definition project for the build definition

MetaDeps.scala # source file in the root project of
meta-meta-build in project/project/

Don’t worry! Most of the time you are not going to need all that. But under-
standing the principle can be helpful.

94

Basic-Def.html
Task-Graph.html
Library-Dependencies.html
Multi-Project.html
Multi-Project.html

By the way: any time files ending in .scala or .sbt are used, naming them
build.sbt and Dependencies.scala are conventions only. This also means
that multiple files are allowed.

Tracking dependencies in one place

One way of using the fact that .scala files under project becomes part of the
build definition is to create project/Dependencies.scala to track dependen-
cies in one place.

import sbt._

object Dependencies {
// Versions
lazy val akkaVersion = "2.6.21"

// Libraries
val akkaActor = "com.typesafe.akka" %% "akka-actor" % akkaVersion
val akkaCluster = "com.typesafe.akka" %% "akka-cluster" % akkaVersion
val specs2core = "org.specs2" %% "specs2-core" % "4.20.0"

// Projects
val backendDeps =
Seq(akkaActor, specs2core % Test)

}

The Dependencies object will be available in build.sbt. To make it easier to
use the vals defined in it, import Dependencies._ in your build.sbt file.

import Dependencies._

ThisBuild / organization := "com.example"
ThisBuild / version := "0.1.0-SNAPSHOT"
ThisBuild / scalaVersion := "2.12.18"

lazy val backend = (project in file("backend"))
.settings(

name := "backend",
libraryDependencies ++= backendDeps

)

This technique is useful when you have a multi-project build that’s getting large,
and you want to ensure that subprojects have consistent dependencies.

95

When to use .scala files

In .scala files, you can write any Scala code, including top-level classes and
objects.

The recommended approach is to define most settings in a multi-project
build.sbt file, and using project/*.scala files for task implementations or
to share values, such as keys. The use of .scala files also depends on how
comfortable you or your team are with Scala.

Defining auto plugins

For more advanced users, another way of organizing your build is to define
one-off auto plugins in project/*.scala. By defining triggered plugins, auto
plugins can be used as a convenient way to inject custom tasks and commands
across all subprojects.

Getting Started summary

This page wraps up the Getting Started Guide.

To use sbt, there are a small number of concepts you must understand. These
have some learning curve, but on the positive side, there isn’t much to sbt except
these concepts. sbt uses a small core of powerful concepts to do everything it
does.

If you’ve read the whole Getting Started series, now you know what you need
to know.

sbt: The Core Concepts

• the basics of Scala. It’s undeniably helpful to be familiar with Scala syn-
tax. Programming in Scala written by the creator of Scala is a great
introduction.

• .sbt build definition
• your build definition is a big DAG of tasks and their dependencies.
• to create a Setting, call one of a few methods on a key: :=, +=, or ++=.
• each setting has a value of a particular type, determined by the key.
• tasks are special settings where the computation to produce the key’s value

will be re-run each time you kick off a task. Non-tasks compute the value
once, when first loading the build definition.

• Scopes
• each key may have multiple values, in distinct scopes.
• scoping may use three axes: configuration, project, and task.

96

Plugins.html
https://www.artima.com/shop/programming_in_scala_3ed
Basic-Def.html
Scopes.html

• scoping allows you to have different behaviors per-project, per-task, or
per-configuration.

• a configuration is a kind of build, such as the main one (Compile) or the
test one (Test).

• the per-project axis also supports “entire build” scope.
• scopes fall back to or delegate to more general scopes.
• put most of your configuration in build.sbt, but use .scala build defi-

nition files for defining classes and larger task implementations.
• the build definition is an sbt project in its own right, rooted in the project

directory.
• Plugins are extensions to the build definition
• add plugins with the addSbtPlugin method in project/plugins.sbt

(NOT build.sbt in the project’s base directory).

If any of this leaves you wondering rather than nodding, please ask for help, go
back and re-read, or try some experiments in sbt’s interactive mode.

Good luck!

Advanced Notes

Since sbt is open source, don’t forget you can check out the source code too!

Frequently Asked Questions

Project Information

What does the name “sbt” stand for, and why shouldn’t it be written
“SBT”?

TL;DR the name sbt doesn’t stand for anything, it’s just “sbt”, and it should
be written that way.

When Mark Harrah ([@harrah][]) first created the project he called it “Simple
Build Tool”, but in his [first public announcement][sbt 0.3.2 announcement] of
it he already referred to it as just “sbt”. Over time some have re-defined sbt to
stand for “Scala Build Tool”, but we believe that isn’t accurate either given it
can be used to build Java-only projects.

Nowadays we just call sbt “sbt”, and to reinforce that the name is no longer
an [initialism][] we always write it in all lowercase letters. However, we are cool
with [��][subuta] (subuta) as a nickname.

[@harrah]: https://github.com/harrah [sbt 0.3.2 announcement]: https://www.scala-
lang.org/old/node/392.html [initialism]: https://en.oxforddictionaries.com/definition/initialism
[subuta]: https://ja.wikipedia.org/wiki/%E9%85%A2%E8%B1%9A

97

Using-Plugins.html
https://www.scala-sbt.org/community.html#how-can-I-get-help
https://github.com/sbt/sbt

How do I get help?

• See How can I get help?

How do I report a bug?

• See Get Involved

How can I help?

• See Get Involved

Usage

My last command didn’t work but I can’t see an explanation. Why?

sbt 1.9.8 by default suppresses most stack traces and debugging information. It
has the nice side effect of giving you less noise on screen, but as a newcomer it
can leave you lost for explanation. To see the previous output of a command
at a higher verbosity, type last <task> where <task> is the task that failed or
that you want to view detailed output for. For example, if you find that your
update fails to load all the dependencies as you expect you can enter:

> last update

and it will display the full output from the last run of the update command.

How do I disable ansi codes in the output?

Sometimes sbt doesn’t detect that ansi codes aren’t supported and you get
output that looks like:

[0m[[0minfo [0m] [0mSet current project to root

or ansi codes are supported but you want to disable colored output. To com-
pletely disable ansi codes, pass -no-colors option:

$ sbt -no-colors

How can I start a Scala interpreter (REPL) with sbt project config-
uration (dependencies, etc.)?

In sbt’s shell run console.

98

https://www.scala-sbt.org/community.html#how-can-I-get-help
https://www.scala-sbt.org/community.html#how-can-I-help
https://www.scala-sbt.org/community.html#how-can-I-help

Build definitions

What are the :=, +=, and ++= methods?

These are methods on keys used to construct a Setting or a Task. The Getting
Started Guide covers all these methods, see .sbt build definition, task graph,
and appending values for example.

What is the % method?

It’s used to create a ModuleID from strings, when specifying managed depen-
dencies. Read the Getting Started Guide about library dependencies.

What does ThisBuild / scalaVersion mean?

ThisBuild acts as a special subproject name that you can use to define default
value for the build. When you define one or more subprojects, and when the
subproject does not define scalaVersion key, it will look for ThisBuild /
scalaVersion.

See build-wide settings.

What is ModuleID, Project, …?

To figure out an unknown type or method, have a look at the Getting Started
Guide if you have not. Also try the index of commonly used methods, values,
and types, and the API Documentation.

How do I add files to a jar package?

The files included in an artifact are configured by default by a task mappings
that is scoped by the relevant package task. The mappings task returns a
sequence Seq[(File,String)] of mappings from the file to include to the path
within the jar. See mapping files for details on creating these mappings.

For example, to add generated sources to the packaged source artifact:

Compile / packageSrc / mappings ++= {
import Path.{flat, relativeTo}
val base = (Compile / sourceManaged).value
val srcs = (Compile / managedSources).value
srcs pair (relativeTo(base) | flat)

}

This takes sources from the managedSources task and relativizes them against
the managedSource base directory, falling back to a flattened mapping. If a
source generation task doesn’t write the sources to the managedSource directory,

99

Basic-Def.html
Task-Graph.html
Appending-Values.html
Library-Dependencies.html
Multi-Project.html#ThisBuild
Getting-Started.html
Getting-Started.html
Name-Index.html
https://www.scala-sbt.org/1.x/api/sbt/index.html
Mapping-Files.html

the mapping function would have to be adjusted to try relativizing against
additional directories or something more appropriate for the generator.

How can I generate source code or resources?

See Generating Files.

How can a task avoid redoing work if the input files are unchanged?

See Caching.

Extending sbt

How can I add a new dependency configuration?

See How to define a custom dependency configuration.

How do I add a test configuration?

See the Additional test configurations section of Testing.

How can I create a custom run task, in addition to run?

This answer is extracted from a mailing list discussion.

Read the Getting Started Guide up to custom settings for background.

A basic run task is created by:

lazy val myRunTask = taskKey[Unit]("A custom run task.")

// this can go either in a `build.sbt` or the settings member
// of a Project in a full configuration
fullRunTask(myRunTask, Test, "foo.Foo", "arg1", "arg2")

If you want to be able to supply arguments on the command line, replace
TaskKey with InputKey and fullRunTask with fullRunInputTask. The Test
part can be replaced with another configuration, such as Compile, to use that
configuration’s classpath.

This run task can be configured individually by specifying the task key in the
scope. For example:

myRunTask / fork := true

myRunTask / javaOptions += "-Xmx6144m"

100

Howto-Generating-Files.html
Caching.html
Custom-Dependency-Configuration.html
Testing.html#additional-test-configurations
Testing.html
https://groups.google.com/group/simple-build-tool/browse_thread/thread/4c28ee5b7e18b46a/
Custom-Settings.html

How should I express a dependency on an outside tool such as pro-
guard?

Tool dependencies are used to implement a task and are not needed by project
source code. These dependencies can be declared in their own configuration and
classpaths. These are the steps:

1. Define a new configuration.
2. Declare the tool dependencies in that configuration.
3. Define a classpath that pulls the dependencies from the Update Report

produced by update.
4. Use the classpath to implement the task.

As an example, consider a proguard task. This task needs the ProGuard jars
in order to run the tool. First, define and add the new configuration:

lazy val ProguardConfig = config("proguard").hide

ivyConfigurations += ProguardConfig

Then,

// Add proguard as a dependency in the custom configuration.
// This keeps it separate from project dependencies.
libraryDependencies +=

"net.sf.proguard" % "proguard" % "4.4" % ProguardConfig.name

// Extract the dependencies from the UpdateReport.
ProguardConfig / managedClasspath := {

// these are the types of artifacts to include
val artifactTypes: Set[String] = (ProguardConfig / classpathTypes).value
Classpaths.managedJars(proguardConfig, artifactTypes, update.value)

}

// Use the dependencies in a task, typically by putting them
// in a ClassLoader and reflectively calling an appropriate
// method.
proguard := {

val cp: Seq[File] = (ProguardConfig / managedClasspath).value
// ... do something with , which includes proguard ...

}

Defining the intermediate classpath is optional, but it can be useful for debug-
ging or if it needs to be used by multiple tasks. It is also possible to specify
artifact types inline. This alternative proguard task would look like:

proguard := {
val artifactTypes = Set("jar")
val cp =
Classpaths.managedJars(proguardConfig, artifactTypes, update.value)

101

Library-Management.html#ivy-configurations
Library-Management.html
Update-Report.html

// ... do something with , which includes proguard ...
}

How would I change sbt’s classpath dynamically?

It is possible to register additional jars that will be placed on sbt’s classpath.
Through State, it is possible to obtain a xsbti.ComponentProvider, which
manages application components. Components are groups of files in the
~/.sbt/boot/ directory and, in this case, the application is sbt. In addition to
the base classpath, components in the “extra” component are included on sbt’s
classpath.

(Note: the additional components on an application’s classpath are declared by
the components property in the [main] section of the launcher configuration
file boot.properties.)

Because these components are added to the ~/.sbt/boot/ directory and
~/.sbt/boot/ may be read-only, this can fail. In this case, the user has
generally intentionally set sbt up this way, so error recovery is not typically
necessary (just a short error message explaining the situation.)

Example of dynamic classpath augmentation

The following code can be used where a State => State is required, such as
in the onLoad setting (described below) or in a command. It adds some files to
the “extra” component and reloads sbt if they were not already added. Note
that reloading will drop the user’s session state.

def augment(extra: Seq[File])(s: State): State = {
// Get the component provider

val cs: xsbti.ComponentProvider = s.configuration.provider.components()

// Adds the files in 'extra' to the "extra" component
// under an exclusive machine-wide lock.
// The returned value is 'true' if files were actually copied and 'false'
// if the target files already exists (based on name only).

val copied: Boolean = s.locked(cs.lockFile, cs.addToComponent("extra", extra.toArray))

// If files were copied, reload so that we use the new classpath.
if(copied) s.reload else s

}

How can I take action when the project is loaded or unloaded?

See How to take an action on startup.

102

https://www.scala-sbt.org/1.x/api/sbt/State$.html
../api/xsbti/ComponentProvider.html
Commands.html
Howto-Startup.html

Example of project load/unload hooks

The following example maintains a count of the number of times a project has
been loaded and prints that number:

{
// the key for the current count
val key = AttributeKey[Int]("loadCount")
// the State transformer
val f = (s: State) => {

val previous = s get key getOrElse 0
println("Project load count: " + previous)
s.put(key, previous + 1)

}
Global / onLoad := {

val previous = (Global / onLoad).value
f compose previous

}
}

Errors

On project load, “Reference to uninitialized setting”

Setting initializers are executed in order. If the initialization of a setting depends
on other settings that has not been initialized, sbt will stop loading.

In this example, we try to append a library to libraryDependencies before it
is initialized with an empty sequence.

libraryDependencies += "commons-io" % "commons-io" % "1.4" % "test"

disablePlugins(plugins.IvyPlugin)

To correct this, include the IvyPlugin plugin settings, which includes
libraryDependencies := Seq(). So, we just drop the explicit disabling.

libraryDependencies += "commons-io" % "commons-io" % "1.4" % "test"

A more subtle variation of this error occurs when using scoped settings.

// error: Reference to uninitialized setting
settings = Seq(
libraryDependencies += "commons-io" % "commons-io" % "1.2" % "test",
fullClasspath := fullClasspath.value.filterNot(_.data.name.contains("commons-io"))

)

This setting varies between the test and compile scopes. The solution is use
the scoped setting, both as the input to the initializer, and the setting that we
update.

103

Scopes.html

Compile / fullClasspath := (Compile / fullClasspath).value.filterNot(_.data.name.contains("commons-io"))

Dependency Management

How do I resolve a checksum error?

This error occurs when the published checksum, such as a sha1 or md5 hash,
differs from the checksum computed for a downloaded artifact, such as a jar or
pom.xml. An example of such an error is:

[warn] problem while downloading module descriptor:
https://repo1.maven.org/maven2/commons-fileupload/commons-fileupload/1.2.2/commons-fileupload-1.2.2.pom:
invalid sha1: expected=ad3fda4adc95eb0d061341228cc94845ddb9a6fe computed=0ce5d4a03b07c8b00ab60252e5cacdc708a4e6d8 (1070ms)

The invalid checksum should generally be reported to the repository owner (as
was done for the above error). In the meantime, you can temporarily disable
checking with the following setting:

checksums in update := Nil

See library management for details.

I’ve added a plugin, and now my cross-compilations fail!

This problem crops up frequently. Plugins are only published for the Scala
version that sbt uses (currently, 2.12). You can still use plugins during cross-
compilation, because sbt only looks for a 2.12 version of the plugin.

… unless you specify the plugin in the wrong place!

A typical mistake is to put global plugin definitions in ~/.sbt/plugins.sbt.
THIS IS WRONG. .sbt files in ~/.sbt are loaded for each build–that is,
for each cross-compilation. So, if you build for Scala 2.11.0, sbt will try to find
a version of the plugin that’s compiled for 2.11.0–and it usually won’t. That’s
because it doesn’t know the dependency is a plugin.

To tell sbt that the dependency is an sbt plugin, make sure you define your
global plugins in a .sbt file in ~/.sbt/plugins/. sbt knows that files in
~/.sbt/plugins are only to be used by sbt itself, not as part of the general build
definition. If you define your plugins in a file under that directory, they won’t
foul up your cross-compilations. Any file name ending in .sbt will do, but most
people use ~/.sbt/plugins/build.sbt or ~/.sbt/plugins/plugins.sbt.

Miscellaneous

Where can I find plugins for 1.9.8?

See Community Plugins for a list of currently available plugins.

104

https://issues.sonatype.org/browse/MVNCENTRAL-46
Library-Management.html
Communitiy-Plugins.html

General Information

This part of the documentation has project “meta-information” such as where
to get help, find source code and how to contribute.

Credits

sbt was originally created by Mark Harrah ([@harrah][@harrah]) in 2008. Most
of the fundamental aspects of sbt, such as the Scala incremental compiler, in-
tegration with Maven and Ivy dependencies, and parallel task processing were
conceived and initially implemented by Mark.

By 2010, when sbt 0.7 came out, many open-source Scala projects were using
sbt as their build tool.

Mark joined Typesafe (now Lightbend) in 2011, the year the company was
founded. sbt 0.10.0 shipped that same year. Mark remained the maintainer and
most active contributor until March 2014, with sbt 0.13.1 as his last release.

Josh Suereth ([@jsuereth][@jsuereth]) at Typesafe became the next maintainer
of sbt.

In 2014, Eugene Yokota ([@eed3si9n][@eed3si9n]) joined Typesafe to co-lead
sbt with Josh. This team carried the 0.13 series through 0.13.5 and started the
trajectory to 1.0 as [technology previews][sbt-0.13-Tech-Previews]. By the time
of Josh’s departure in 2015, after sbt 0.13.9, they had shipped AutoPlugin, kept
sbt 0.13 in shape, and laid groundwork for sbt server.

Grzegorz Kossakowski ([@gkossakowski][@gkossakowski]) worked on a better in-
cremental compiler algorithm called “name hashing” during his time on the
Scala team at Typesafe. Name hashing became the default incremental com-
piler in sbt 0.13.6 (2014). Lightbend later commissioned Grzegorz to refine
name hashing using a technique called class-based name hashing, which was
adopted by Zinc 1. Another notable contribution from Grzegorz was hosting a
series of meetups with @WarszawScaLa, and (with his arm in a sling!) guiding
the Warszaw Scala community to fix the infamous blank-line problem.

In May 2015, Dale Wijnand ([@dwijnand][@dwijnand]) became a committer
from the community after contributing features such as inThisBuild and -=.

From June 2015 to early 2016, Martin Duhem ([@Duhemm][@Duhemm]) joined
Typesafe as an intern, working on sbt. During this time, Martin worked on
crucial components such as making the compiler bridge configurable for Zinc,
and code generation for pseudo case classes (which later became Contraband).

Around this time, Eugene, Martin, and Dale started the sbt 1.x code-
base, splitting the code base into multiple modules: sbt/sbt, Zinc 1,
sbt/librarymanagement, sbt/util, and sbt/io. The aim was to make Zinc 1, an
incremental compiler usable by all build tools.

105

https://www.scala-lang.org/old/node/392.html
http://blog.japila.pl/2014/07/gkossakowski-on-warszawscala-about-how-to-patch-scalasbt/
http://blog.japila.pl/2014/07/hacking-scalasbt-with-gkossakowski-on-warszawscala-meetup-in-javeo_eu/

In August 2016, Dale joined the Tooling team at Lightbend. Dale and Eugene
oversaw the releases 0.13.12 through 0.13.16, as well as the development of sbt
1.0.

In spring 2017, the Scala Center participated in the Zinc 1 development effort.
Jorge Vicente Cantero ([@jvican][@jvican]) has contributed a number of im-
provements including the fix for the “as seen from” bug that had blocked Zinc
1.

From spring 2018, Ethan Atkins joined the sbt project as a community member,
and quickly became the leading contributor to the project. Initially his contri-
bution was implementing Close Watch that uses native code to provide watch
service on macOS. He’s worked on various performance related improvements
since then including layered ClassLoader, logging rewrite, and native thin client
that uses GraalVM native image.

According to git shortlog -sn --no-merges on sbt/sbt, sbt/zinc,
sbt/librarymanagement, sbt/util, sbt/io, sbt/contraband, and sbt/website
there were 9151 non-merge commits by 318 contributors.

• Mark Harrah 3852
• Eugene Yokota (eed3si9n) 1760
• Dale Wijnand 524
• Josh Suereth 357
• Grzegorz Kossakowski 349
• Martin Duhem 333
• Jorge Vicente Cantero (jvican) 314
• Eugene Vigdorchik 108
• Kenji Yoshida (xuwei-k) 96
• Indrajit Raychaudhuri 90
• Dan Sanduleac 74
• Benjy Weinberger 52
• Max Peng 52
• Jacek Laskowski 40
• Jason Zaugg 40
• Josh Soref 39
• Krzysztof Romanowski 39
• Pierre DAL-PRA 36
• Andrzej Jozwik 33
• Antonio Cunei 30
• Aaron S. Hawley 29
• Guillaume Martres 25
• James Roper 24
• Chua Chee Seng (cheeseng) 24
• Paolo G. Giarrusso 23
• Matej Urbas 22
• Stu Hood 22
• Adriaan Moors 18

106

https://github.com/sbt/sbt/graphs/contributors
https://github.com/sbt/zinc/graphs/contributors
https://github.com/sbt/librarymanagement/graphs/contributors
https://github.com/sbt/util/graphs/contributors
https://github.com/sbt/io/graphs/contributors
https://github.com/sbt/contraband/graphs/contributors
https://github.com/sbt/website/graphs/contributors

• Jean-Rémi Desjardins 16
• Sanjin Sehic 16
• Fedor Korotkov 14
• Andrew Johnson 13
• David Perez 13
• Havoc Pennington 13
• Liang Tang 12
• Peter Vlugter 12
• Taro L. Saito 10
• Paul Phillips 9
• Roberto Tyley 9
• Vojin Jovanovic 9
• William Benton 9
• �� (Yang Bo) 9
• Brian Topping 8
• Bruno Bieth 8
• Johannes Rudolph 8
• KAWACHI Takashi 8
• Ken Kaizu (krrrr38) 8
• Artyom Olshevskiy 7
• Eugene Platonov 7
• Matthew Farwell 7
• Michael Allman 7
• David Pratt 6
• Luca Milanesio 6
• Nepomuk Seiler 6
• Peiyu Wang 6
• Simeon H.K. Fitch 6
• Stephen Samuel 6
• Thierry Treyer 6
• James Earl Douglas 5
• Jean-Remi Desjardins 5
• Miles Sabin 5
• Seth Tisue 5
• qgd 5
• Anthony Whitford 4
• Bardur Arantsson 4
• Ches Martin 4
• Chris Birchall 4
• Daniel C. Sobral 4
• Heikki Vesalainen 4
• Krzysztof Nirski 4
• Lloyd Meta 4
• Michael Schmitz 4
• Orr Sella 4
• Philipp Dörfler 4

107

• Tim Harper 4
• Vasya Novikov 4
• Vincent Munier 4
• Jürgen Keck (j-keck) 4
• Richard Summerhayes (rasummer) 4
• Adam Warski 3
• Ben McCann 3
• Enno Runne 3
• Eric Bowman 3
• Henrik Engstrom 3
• Ian Forsey 3
• James Ward 3
• Jesse Kinkead 3
• Justin Pihony 3
• Kazuhiro Sera 3
• Krzysztof Borowski 3
• Lars Hupel 3
• Leif Wickland 3
• Lukas Rytz 3
• Max Worgan 3
• Oliver Wickham 3
• Olli Helenius 3
• Roman Timushev 3
• Simon Schäfer 3
• ZhiFeng Hu 3
• daniel-shuy 3
• Roland Schatz 3
• soc 3
• wpitula 3
• Alex Dupre 2
• Alexey Alekhin 2
• Allan Erskine 2
• Alois Cochard 2
• Andreas Flierl 2
• Anthony 2
• Antoine Gourlay 2
• Arnout Engelen 2
• Ben Hutchison 2
• Benjamin Darfler 2
• Brendan W. McAdams 2
• Brennan Saeta 2
• Brian McKenna 2
• Brian Smith 2
• BrianLondon 2
• Charles Feduke 2
• Christian Dedie 2

108

• Cody Allen 2
• Damien Lecan 2
• David Barri 2
• David Harcombe 2
• David Hotham 2
• Derek Wickern 2
• Eric D. Reichert 2
• Eric J. Christeson 2
• Evgeny Goldin 2
• Evgeny Vereshchagin 2
• Francois Armand (fanf42) 2
• Fred Dubois 2
• Heejong Lee 2
• Henri Kerola 2
• Hideki Ikio 2
• Ikenna Nwaiwu 2
• Ismael Juma 2
• Jakob Odersky 2
• Jan Berkel 2
• Jan Niehusmann 2
• Jarek Sacha 2
• Jens Halm 2
• Joachim Hofer 2
• Joe Barnes 2
• Johan Andrén 2
• Jonas Fonseca 2
• Josh Kalderimis 2
• Juan Manuel Caicedo Carvajal 2
• Justin Kaeser 2
• Konrad Malawski 2
• Lex Spoon 2
• Li Haoyi 2
• Lloyd 2
• Lukasz Piepiora 2
• Marcus Lönnberg 2
• Marko Elezovic 2
• Michael Parrott 2
• Mikael Vallerie 2
• Myyk Seok 2
• Ngoc Dao 2
• Nicolas Rémond 2
• Oscar Vargas Torres 2
• Paul Draper 2
• Paulo “JCranky” Siqueira 2
• Petro Verkhogliad 2
• Piotr Kukielka 2

109

• Robin Green 2
• Roch Delsalle 2
• Roman Iakovlev 2
• Scott Royston 2
• Simon Hafner 2
• Sukant Hajra 2
• Suzanne Hamilton 2
• Tejas Mandke 2
• Thomas Koch 2
• Thomas Lockney 2
• Tobias Neef 2
• Tomasz Bartczak 2
• Travis 2
• Vitalii Voloshyn 2
• Wei Chen 2
• Wojciech Langiewicz 2
• Xin Ren 2
• Zava 2
• amishak 2
• beolnix 2
• ddworak 2
• drdamour 2
• Eric K Richardson (ekrich) 2
• fsi206914 2
• henry 2
• kaatzee 2
• kalmanb 2
• nau 2
• qvaughan 2
• sam 2
• softprops 2
• tbje 2
• timt 2
• Aaron D. Valade 1
• Alexander Buchholtz 1
• Alexandr Nikitin 1
• Alexandre Archambault 1
• Alexey Levan 1
• Anatoly Fayngelerin 1
• Andrea 1
• Andrew D Bate 1
• Andrew Miller 1
• Ashley Mercer 1
• Bruce Mitchener 1
• Cause Cheng 1
• Cause Chung 1

110

• Christian Krause 1
• Christophe Vidal 1
• Claudio Bley 1
• Daniel Peebles 1
• Denis T 1
• Devis Lucato 1
• Dmitry Melnichenko 1
• EECOLOR 1
• Edward Samson 1
• Erik Bakker 1
• Erik Bruchez 1
• Ethan 1
• Federico Ragona 1
• Felix Leipold 1
• Geoffroy Couprie 1
• Gerolf Seitz 1
• Gilad Hoch 1
• Gregor Heine 1
• HairyFotr 1
• Heiko Seeberger 1
• Holden Karau 1
• Hussachai Puripunpinyo 1
• Jacques 1
• Jakob Grunig 1
• James Koch 1
• Jan Polák 1
• Jan Ziniewicz 1
• Jisoo Park 1
• Joonas Javanainen 1
• Joscha Feth 1
• Josef Vlach 1
• Joseph Earl 1
• João Costa 1
• Justin Ko 1
• Kamil Kloch 1
• Kazuyoshi Kato 1
• Kevin Scaldeferri 1
• Knut Petter Meen 1
• Krzysztof 1
• Kunihiko Ito 1
• LMnet 1
• Luc Bourlier 1
• Lucas Mogari 1
• Lutz Huehnken 1
• Mal Graty 1
• Marcos Savoury 1

111

• Marek Żebrowski 1
• Markus Siemens 1
• Martynas Mickevicius 1
• Martynas Mickevičius 1
• Michael Bayne 1
• Michael Ledin 1
• Nathan Hamblen 1
• Nyavro 1
• OlegYch 1
• Olivier ROLAND 1
• Pavel Penkov 1
• Pedro Larroy 1
• Peter Pan 1
• Piotr Kukiełka 1
• Rikard Pavelic 1
• Robert Jacob 1
• Rogach 1
• Sergey Andreev 1
• Shanbin Wang 1
• Shane Hender 1
• Simon Olofsson 1
• Stefan Zeiger 1
• Stephen Duncan Jr 1
• Steve Gury 1
• Sören Brunk 1
• Thomas Grainger 1
• Tim Sheppard 1
• Todor Todorov 1
• Toshiyuki Takahashi 1
• Travis Brown 1
• Tsubasa Irisawa 1
• Victor Hiairrassary 1
• Yasuo Nakanishi 1
• Yoshitaka Fujii 1
• adinath 1
• albuch 1
• cchantep 1
• cdietze 1
• choucri 1
• hokada 1
• joiskov 1
• jozic 1
• jyane 1
• k.bigwheel 1
• kavedaa 1
• mmcbride 1

112

• pishen tsai 1
• sanjiv sahayam 1
• saturday06 1
• seroperson 1
• slideon 1
• thricejamie 1
• todesking 1
• totem3 1
• upescatore 1
• valydia 1
• walidbenchikha 1
• Wiesław Popielarski 1
• Łukasz Indykiewicz 1

For the details on individual contributions, see Changes.

The following people contributed ideas, documentation, or code to sbt but are
not listed above:

• Josh Cough
• Nolan Darilek
• Viktor Klang
• David R. MacIver
• Ross McDonald
• Andrew O’Malley
• Jorge Ortiz
• Mikko Peltonen
• Ray Racine
• Stuart Roebuck
• Harshad RJ
• Tony Sloane
• Francisco Treacy
• Vesa Vilhonen

The sbt ecosystem would not be the same without so many awesome plugins.
Here are some of the plugins and their contributors:

• Play Framework by Lightbend (James Roper, Peter Hausel, and many
others)

• Scala.js by Sébastien Doeraene, Tobias Schlatter, et al
• sbt-assembly by Eugene Yokota (eed3si9n)
• coursier by Alexandre Archambault
• sbt Native Packager by Nepomuk Seiler (muuki88) and Josh Suereth
• sbt-dependency-graph by Johannes Rudolph
• WartRemover by Claire Neveu and Brian McKenna
• sbt-android by Perry (pfn)
• sbt-revolver by Johannes Rudolph and Mathias (sirthias)
• sbt-docker by Marcus Lönnberg

113

Changes.html
https://playframework.com/
https://www.scala-js.org/
https://github.com/sbt/sbt-assembly
https://github.com/coursier/coursier
https://sbt-native-packager.readthedocs.io/en/stable/
https://github.com/jrudolph/sbt-dependency-graph
https://www.wartremover.org/
https://github.com/scala-android/sbt-android
https://github.com/spray/sbt-revolver
https://github.com/marcuslonnberg/sbt-docker

• tut by Rob Norris (tpolecat)
• sbt-release by Gerolf Seitz
• sbt-jmh by Konrad Malawski (ktoso)
• sbt-updates by Roman Timushev
• xsbt-web-plugin by James Earl Douglas and Artyom Olshevskiy
• sbt-scoverage by Stephen Samuel and Mikko Koponen
• sbt-web by Lightbend (Christopher Hunt, Peter Vlugter, et al)
• sbt-buildinfo by Eugene Yokota (eed3si9n)
• sbt-pack by Taro L. Saito (xerial)
• sbt-onejar by Jason Zaugg (retronym)
• sbt-git by Josh Suereth
• sbt-scalariform by Heiko Seeberger, Daniel Trinh, et al
• ensime-sbt by Sam Halliday (fommil)
• sbt-fresh by Heiko Seeberger
• sbt-web-scalajs by Vincent Munier
• sbt-sonatype by Taro L. Saito (xerial)
• sbt-sublime by Orr Sella
• sbt-errors-summary by Martin Duhem
• sbt-bintray by Doug Tangren (softprops)
• Migration Manager by Lightbend (Mirco Dotta, Seth Tisue, et al)
• sbt-protobuf by Gerolf Seitz and Kenji Yoshida (xuwei-k)
• sbt-site by Jonas Fonseca, Josh Suereth, et al
• sbt-doctest by KAWACHI Takashi
• sbt-robovm by Jan Polák
• scalastyle-sbt-plugin by Matthew Farwell
• sbt-microsites by 47 Degrees (Juan Pedro Moreno, Javier de Silóniz

Sandino, et al)
• sbt-header by Heiko Seeberger and Benedikt Ritter
• sbt-groll by Heiko Seeberger
• sbt-ctags by Cody Allen
• sbt-aws-lambda by Gilt (Brendan St John, et al)
• sbt-heroku by Heroku (Joe Kutner)
• sbt-dynver by Dale Wijnand
• sbt-unidoc by Eugene Yokota and Peter Vlugter
• sbt-docker-compose by Tapad (Kurt Kopchik et al)
• sbt-coveralls by Ian Forsey and Stephen Samuel
• gatling-sbt by Pierre Dal-Pra
• sbt-boilerplate by Johannes Rudolph
• fm-sbt-s3-resolver by Tim Underwood
• sbt-reactjs by Dan Di Spaltro
• sbt-scalabuff by Aloïs Cochard
• sbt-pgp by Josh Suereth
• jacoco4sbt by Joachim Hofer
• sbt-s3-resolver by Alexey Alekhin (laughedelic)
• sbt-maven-plugin by Shiva Wu
• sbt-newrelic by Gilt (Gary Coady et al)

114

https://github.com/tpolecat/tut
https://github.com/sbt/sbt-release
https://github.com/ktoso/sbt-jmh
https://github.com/rtimush/sbt-updates
https://github.com/earldouglas/xsbt-web-plugin
https://github.com/scoverage/sbt-scoverage
https://github.com/sbt/sbt-web
https://github.com/sbt/sbt-buildinfo
https://github.com/xerial/sbt-pack
https://github.com/sbt/sbt-onejar
https://github.com/sbt/sbt-git
https://github.com/sbt/sbt-scalariform
http://ensime.org/build_tools/sbt/
https://github.com/sbt/sbt-fresh
https://github.com/vmunier/sbt-web-scalajs
https://github.com/xerial/sbt-sonatype
https://github.com/orrsella/sbt-sublime
https://github.com/Duhemm/sbt-errors-summary
https://github.com/sbt/sbt-bintray
https://github.com/lightbend/mima/wiki
https://github.com/sbt/sbt-protobuf
https://github.com/sbt/sbt-site
https://github.com/tkawachi/sbt-doctest
https://github.com/roboscala/sbt-robovm
https://github.com/scalastyle/scalastyle-sbt-plugin
https://github.com/47degrees/sbt-microsites
https://github.com/sbt/sbt-header
https://github.com/sbt/sbt-groll
https://github.com/ceedubs/sbt-ctags
https://github.com/gilt/sbt-aws-lambda
https://github.com/heroku/heroku-sbt-plugin
https://github.com/sbt/sbt-dynver
https://github.com/sbt/sbt-unidoc
https://github.com/Tapad/sbt-docker-compose
https://github.com/scoverage/sbt-coveralls
https://github.com/gatling/gatling-sbt
https://github.com/sbt/sbt-boilerplate
https://github.com/frugalmechanic/fm-sbt-s3-resolver
https://github.com/dispalt/sbt-reactjs
https://github.com/sbt/sbt-scalabuff
https://github.com/sbt/sbt-pgp
https://github.com/sbt/jacoco4sbt
https://github.com/ohnosequences/sbt-s3-resolver
https://github.com/shivawu/sbt-maven-plugin
https://github.com/gilt/sbt-newrelic

• naptime by Coursera (Brennan Saeta, Bryan Kane et al)
• neo-sbt-scalafmt by Lucid Software (Paul Draper et al)
• Courier by Coursera (Joe Betz et al)
• sbt-optimizer by Johannes Rudolph
• sbt-appengine by Eugene Yokota (eed3si9n) and Yasushi Abe
• sbt/sbt-ghpages by Josh Suereth
• kotlin-plugin by Perry (pfn)
• sbt-avro by Juan Manuel Caicedo Carvajal (cavorite), Ben McCann, et al
• sbt-aspectj by Lightbend (Peter Vlugter et al)
• sbt-crossproject Denys Shabalin and Guillaume Massé
• sbt-scapegoat by Stephen Samuel
• sbt-dependency-graph-sugar by Gilt (Brendan St John et al)
• sbt-aether-deploy by Arktekk (Erlend Hamnaberg et al)
• sbt-spark-submit by Forest Fang
• sbt-proguard by Lightbend (Peter Vlugter et al)
• Jenkins CI sbt plugin by Uzi Landsmann
• sbt-quickfix by Dave Cleaver
• sbt-growl-plugin Doug Tangren (softprops)
• sbt-dependency-check by Alexander v. Buchholtz
• sbt-structure by JetBrains (Justin Kaeser et al)
• sbt-typescript by Brandon Arp
• sbt-javacv by Bytedeco (Lloyd Chan et al)
• sbt-stats by Orr Sella
• sbt-rig by Verizon (Timothy Perrett et al)
• sbt-swagger-codegen by UniCredit (Andrea Peruffo, Francesco MDE, et

al)
• sbt-pom-reader by Josh Suereth
• sbt-class-diagram by Kenji Yoshida (xuwei-k)

Kudos also to people who have answered questions on Stack Overflow (Jacek
Laskowski, Lukasz Piepiora, et al) and sbt Gitter channel, and many who have
reported issues and contributed ideas on GitHub.

Thank you all.

[@harrah]: https://github.com/harrah [@jsuereth]: https://github.com/jsuereth
[@eed3si9n]: https://github.com/eed3si9n [@dwijnand]: https://github.com/dwijnand
[@gkossakowski]: https://github.com/gkossakowski [@Duhemm]: https://github.com/Duhemm
[@jvican]: https://github.com/jvican [sbt-0.13-Tech-Previews]: sbt-0.13-Tech-
Previews.html

115

https://github.com/coursera/naptime
https://github.com/lucidsoftware/neo-sbt-scalafmt
http://coursera.github.io/courier/
https://github.com/jrudolph/sbt-optimizer
https://github.com/sbt/sbt-appengine
https://github.com/sbt/sbt-ghpages
https://github.com/pfn/kotlin-plugin
https://github.com/sbt/sbt-avro
https://github.com/sbt/sbt-aspectj
https://github.com/portable-scala/sbt-crossproject
https://github.com/sksamuel/sbt-scapegoat
https://github.com/gilt/sbt-dependency-graph-sugar
https://github.com/arktekk/sbt-aether-deploy
https://github.com/saurfang/sbt-spark-submit
https://github.com/sbt/sbt-proguard
https://github.com/jenkinsci/sbt-plugin
https://github.com/dscleaver/sbt-quickfix
https://github.com/softprops/sbt-growl-plugin
https://github.com/albuch/sbt-dependency-check
https://github.com/JetBrains/sbt-structure
https://github.com/ArpNetworking/sbt-typescript
https://github.com/bytedeco/sbt-javacv
https://github.com/orrsella/sbt-stats
https://github.com/Verizon/sbt-rig
https://github.com/unicredit/sbt-swagger-codegen
https://github.com/sbt/sbt-pom-reader
https://github.com/xuwei-k/sbt-class-diagram
https://stackoverflow.com/tags/sbt/topusers

Community Plugins

sbt Organization

The sbt organization is available for use by any sbt plugin. Developers who
contribute their plugins into the community organization will still retain control
over their repository and its access. The goal of the sbt organization is to
organize sbt software into one central location.

A side benefit to using the sbt organization for projects is that you can use
gh-pages to host websites under the https://www.scala-sbt.org domain.

The sbt autoplugin giter8 template is a good place to start. This sets up a new
sbt plugin project appropriately. The generated README includes a summary of
the steps for publishing a new community plugin.

Community Ivy Repository

Lightbend has provided a freely available Ivy Repository for sbt projects to
use. This Ivy repository is mirrored from the freely available Bintray service. If
you’d like to submit your plugin, please follow these instructions: Bintray For
Plugins.

Cross building plugins from sbt 0.13

See Cross Build Plugins.

Plugins available for sbt 1.0 (including RC-x)

[Edit] this page to submit a pull request that adds your plugin to the list.

Code formatter plugins

• sbt-scalafmt: code formatting using Scalafmt.
• sbt-scalariform: code formatting using Scalariform.
• neo-sbt-scalafmt: code formatting using Scalafmt.
• sbt-java-formatter: code formatting for Java sources.
• sbt-source-format: code formatting for Java and clang (c/c++/objc)

sources.
• safety-plugin: Enforce the use of style rules across your company

116

https://github.com/sbt
https://github.com/sbt/sbt-autoplugin.g8
https://www.lightbend.com
https://repo.scala-sbt.org/scalasbt
https://bintray.com
Bintray-For-Plugins.html
Bintray-For-Plugins.html
Cross-Build-Plugins.html
https://github.com/sbt/website/edit/develop/src/reference/01-General-Info/02-Community-Plugins.md
https://scalameta.org/scalafmt/
https://github.com/sbt/sbt-scalariform
https://github.com/lucidsoftware/neo-sbt-scalafmt
https://github.com/sbt/sbt-java-formatter
https://github.com/swoval/sbt-source-format
https://github.com/leobenkel/safety_plugin

Documentation plugins

• tut: documentation and tutorial generator.
• Laika: Transform Markdown or reStructuredText into HTML or PDF

with Templating.
• sbt-site: site generator.
• sbt-microsites: generate and publish microsites using Jekyll.
• sbt-unidoc: create unified API documentation across subprojects.
• sbt-ghpages: publish generated sites to GitHub pages.
• sbt-class-diagram: generate class diagrams from Scala source code.
• sbt-api-mappings: generate Scaladoc apiMappings for common Scala li-

braries.
• literator: generate literate-style markdown docs from your sources.
• sbt-example: generate ScalaTest test suites from examples in Scaladoc.
• sbt-delombok: delombok Java sources files that contain Lombok annota-

tions to make Javadoc contain Lombok-generated classes and methods.
• sbt-alldocs: collect all the docs for a project and dependencies into a single

folder.
• sbt-apidoc: A port of apidocjs to sbt, to document REST Api.
• sbt-github-pages (docs): publish a website to GitHub Pages with minimal

effort - works well with GitHub Actions.
• sbt-docusaur (docs): build a website using Docusaurus and publish to

GitHub Pages with minimal effort - works well with GitHub Actions.
• sbt-hl-compiler: compile the code snippets from documentation (to keep

it consistent).
• sbt-scaladoc-compiler: compile the code snippets included in Scaladoc

comments.

One jar plugins

• sbt-assembly: create fat JARs.

Release plugins

• sbt-native-packager (docs): build native packages (RPM, .deb etc) for
your projects.

• sbt-pack: create runnable distributions for your projects.
• sbt-bintray: publish artefacts to Bintray.
• sbt-sonatype: publish artefacts to Maven Central.
• sbt-release: create a customizable release process.
• sbt-pgp: sign artefacts using PGP/GPG and manage signing keys.
• sbt-docker: create and push Docker images.
• sbt-aether-deploy: publish artefacts using Eclipse Aether.
• sbt-rig: opinionated common release steps.
• sbt-s3: manage objects on Amazon S3.
• sbt-osgi: create OSGi bundles.

117

https://github.com/tpolecat/tut
https://github.com/planet42/Laika
https://github.com/sbt/sbt-site
https://github.com/47degrees/sbt-microsites
https://github.com/sbt/sbt-unidoc
https://github.com/sbt/sbt-ghpages
https://github.com/xuwei-k/sbt-class-diagram
https://github.com/ThoughtWorksInc/sbt-api-mappings
https://github.com/laughedelic/literator
https://github.com/ThoughtWorksInc/sbt-example
https://github.com/ThoughtWorksInc/sbt-delombok
https://github.com/glngn/sbt-alldocs
https://github.com/valydia/sbt-apidoc
https://apidocjs.com
https://github.com/Kevin-Lee/sbt-github-pages
https://kevin-lee.github.io/sbt-github-pages
https://github.com/Kevin-Lee/sbt-docusaur
https://kevin-lee.github.io/sbt-docusaur
https://github.com/cchantep/sbt-hl-compiler/
https://github.com/cchantep/sbt-scaladoc-compiler/
https://github.com/sbt/sbt-assembly
https://github.com/sbt/sbt-native-packager
https://sbt-native-packager.readthedocs.io/en/stable/
https://github.com/xerial/sbt-pack
https://github.com/sbt/sbt-bintray
https://github.com/xerial/sbt-sonatype
https://github.com/sbt/sbt-release
https://github.com/sbt/sbt-pgp
https://github.com/marcuslonnberg/sbt-docker
https://github.com/arktekk/sbt-aether-deploy
https://github.com/Verizon/sbt-rig
https://github.com/sbt/sbt-s3
https://github.com/sbt/sbt-osgi

• sbt-github-release: publish Github releases.
• sbt-hadoop: publish artifacts to the Hadoop Distributed File System

(HDFS).
• sbt-publish-more: publish artifacts to several repositories
• sbt-deploy: create deployable fat JARs.
• sbt-release-fossil: enhances sbt-release to support Fossil repositories
• sbt-autoversion: automatically set your next version bump based on pat-

terns of your commit message since last release.
• sbt-gcs: manage objects on Google Cloud Storage.
• sbt-sourcebundler: merge all source code into one scala file.
• sbt-kubeyml: Create a typesafe kubernetes Deployment based on your

project settings
• sbt-k8s: Create any manifest or use provided cookbooks using scala-k8s

library
• sbt-release-notes: provide a Release Step for sbt-release to automatically

update the release notes file.

Deployment integration plugins

• sbt-heroku: deploy applications directly to Heroku.
• sbt-docker-compose: launch Docker images using docker compose.
• sbt-appengine deploy your webapp to Google App Engine.
• sbt-marathon: deploy applications on Apache Mesos using the Marathon

framework.
• sbt-riotctl: deploy applications as systemd services directly to a Raspberry

Pi, ensuring dependencies (e.g. wiringpi) are met.
• sbt-kind: load built docker images into a kind cluster.

Utility and system plugins

• sbt-revolver: auto-restart forked JVMs on update.
• sbt-conscript (docs): distribute apps using GitHub and Maven Central.
• sbt-git: run git commands from sbt.
• sbt-errors-summary: show a summary of compilation errors.
• MiMa: binary compatibility management for Scala libraries.
• sbt-groll: navigate git history inside sbt.
• sbt-dynver: set project version dynamically from git metadata.
• sbt-prompt: add promptlets and themes to your sbt prompt.
• sbt-crossproject: cross-build Scala, Scala.js and Scala Native.
• sbt-proguard: run ProGuard on compiled sources.
• sbt-structure: extract project structure in XML format.
• sbt-jni: helpers for working with projects that use JNI.
• sbt-jol: inspect OpenJDK Java Object Layout from sbt.
• sbt-musical: control iTunes from sbt (Mac only).
• sbt-travisci: integration with Travis CI.

118

https://github.com/ohnosequences/sbt-github-release
https://github.com/Tapad/sbt-hadoop-oss
https://hadoop.apache.org
https://github.com/laughedelic/sbt-publish-more
https://github.com/amanjpro/sbt-deploy-plugin
https://chiselapp.com/user/twenstar/repository/sbt-release-fossil
https://github.com/sbt/sbt-release
https://fossil-scm.org
https://github.com/sbt/sbt-autoversion
https://github.com/saint1991/sbt-gcs
https://github.com/kotobotov/sbt-sourcebundler
https://github.com/vaslabs/sbt-kubeyml
https://github.com/hnaderi/sbt-k8s
https://github.com/hnaderi/scala-k8s
https://github.com/AmadeusITGroup/sbt-release-notes
https://github.com/sbt/sbt-release
https://github.com/heroku/heroku-sbt-plugin
https://github.com/Tapad/sbt-docker-compose
https://github.com/sbt/sbt-appengine
https://github.com/Tapad/sbt-marathon
https://mesosphere.github.io/marathon
https://github.com/riot-framework/sbt-riotctl
https://github.com/tirithel/sbt-kind
https://kind.sigs.k8s.io/
https://github.com/spray/sbt-revolver
https://github.com/foundweekends/conscript
https://www.foundweekends.org/conscript/
https://github.com/sbt/sbt-git
https://github.com/Duhemm/sbt-errors-summary
https://github.com/lightbend/mima
https://github.com/sbt/sbt-groll
https://github.com/sbt/sbt-dynver
https://github.com/agemooij/sbt-prompt
https://github.com/portable-scala/sbt-crossproject
https://github.com/sbt/sbt-proguard
https://github.com/JetBrains/sbt-structure
https://github.com/sbt/sbt-jni
https://github.com/ktoso/sbt-jol
https://github.com/tototoshi/sbt-musical
https://github.com/dwijnand/sbt-travisci

• horder: cache compilation artefacts for future builds.
• sbt-javaagent: add Java agents to projects.
• sbt-jshell: Java REPL for sbt.
• sbt-check: compile up to, and including, the typer phase.
• sbt-mima-version-check: Automate which Mima Versions to Check
• sbt-tmpfs: utilize tmpfs to speed up builds.
• sbt-sh: run shell commands from sbt.
• sbt-ammonite-classpath: export classpath for Ammonite and Almond.
• sbt-version-scheme-enforcer-plugin: Derive Mima settings for your library

from your declared versionScheme. This supports Early SemVer, Strict
SemVer, and Package Versioning Policy (PVP).

IDE integration plugins

• sbteclipse: Eclipse project definition generator.
• sbt-sublime: Sublime Text project generator.

Test plugins

• scripted: integration testing for sbt plugins.
• sbt-jmh: run Java Microbenchmark Harness (JMH) benchmarks from sbt.
• sbt-doctest: generate and run tests from Scaladoc comments.
• gatling-sbt: performance and load-testing using Gatling.
• sbt-multi-jvm: run tests using multiple JVMs.
• sbt-scalaprops: scalaprops property-based testing integration.
• sbt-testng: TestNG framework integration.
• sbt-jcstress: Java Concurrency Stress Test (jcstress) integration.
• sbt-stryker4s: Test your tests with mutation testing.
• sbt-cached-ci: Incremental sbt builds for CI environments.

Library dependency plugins

• coursier: pure Scala dependency fetcher.
• sbt-dependency-graph: create dependency graphs using GraphML,

graphviz or ASCII.
• sbt-updates: list updated versions of dependencies.
• fm-sbt-s3-resolver: resolve and publish artefacts using Amazon S3.
• sbt-s3-resolver: resolve dependencies using Amazon S3.
• sbt-dependency-check: check dependencies for known vulnerabili-

ties/CVEs.
• sbt-lock: create a lock file containing explicit sbt dependencies.
• sbt-license-report: generate reports of licenses used by dependencies.
• sbt-duplicates-finder: detect class and resources conflicting in your

project’s classpath.
• sbt-google-cloud-storage: resolver and publisher for Google Cloud Storage.

119

https://github.com/romanowski/hoarder
https://github.com/sbt/sbt-javaagent
https://github.com/xuwei-k/sbt-jshell
https://github.com/jeffreyolchovy/sbt-check
https://github.com/ChristopherDavenport/sbt-mima-version-check
https://github.com/cuzfrog/sbt-tmpfs
https://github.com/melezov/sbt-sh
https://github.com/ThoughtWorksInc/sbt-ammonite-classpath
https://ammonite.io/
https://almond.sh/
https://github.com/isomarcte/sbt-version-scheme-enforcer
https://github.com/sbt/sbteclipse
https://github.com/orrsella/sbt-sublime
Testing-sbt-plugins.html
https://github.com/ktoso/sbt-jmh
https://github.com/tkawachi/sbt-doctest
https://github.com/gatling/gatling-sbt
https://github.com/sbt/sbt-multi-jvm
https://github.com/scalaprops/sbt-scalaprops
https://github.com/sbt/sbt-testng
https://github.com/ktoso/sbt-jcstress
https://github.com/stryker-mutator/stryker4s
https://github.com/OlegYch/sbt-cached-ci
https://github.com/coursier/coursier
https://github.com/jrudolph/sbt-dependency-graph
https://github.com/rtimush/sbt-updates
https://github.com/frugalmechanic/fm-sbt-s3-resolver
https://github.com/ohnosequences/sbt-s3-resolver
https://github.com/albuch/sbt-dependency-check
https://github.com/tkawachi/sbt-lock
https://github.com/sbt/sbt-license-report
https://github.com/sbt/sbt-duplicates-finder
https://github.com/lightbend/sbt-google-cloud-storage

• sbt-trace: find traces of the client or library usage in other projects.
• safety-plugin: Enforce the use of specified versions of dependencies across

your company
• sbt-dependency-lock: generate dependency lockfiles and check for changes

at build time.
• sbt-unzip: Extract zip dependencies where you want in your project.

Web and frontend development plugins

• Play Framework: reactive web framework for Scala and Java.
• Scala.js: Scala to JavaScript compiler.
• xsbt-web-plugin: Servlet support.
• sbt-web: library for building sbt plugins for the web.
• sbt-web-scalajs: use Scala.js with any web server.
• sbt-less: Less CSS compilation support.
• sbt-js-engine: support for sbt plugins that use JavaScript.
• sbt-typescript: TypeScript compilation support.
• sbt-uglify: JavaScript minifier using UglifyJS.
• sbt-terser: JavaScript (ES6+) minifier using terser.
• sbt-digest: generate checksums of assets.
• sbt-scalatra: build and run Scalatra apps.
• sbt-scala-js-map: Configure source mapping for Scala.js projects hosted

on Github.
• sbt-gzip: gzip compressor for assets.
• sbt-stylus: Stylus stylesheet compiler.
• sbt-hepek: Render static websites directly from Scala code.
• sbt-puresass: sbt-web plugin for Sass styles compilation.
• sbt-scala-ts; generates TypeScript declaration files from ScalaJS sources

and outputs Node modules.

Database plugins

• scalikejdbc-mapper-generator: Scala code generator from database
schema.

• sbt-dynamodb: run a local Amazon DynamoDB test instance from sbt.
• sbt-migrations: database migrations manager.

Framework-specific plugins

• sbt-newrelic: NewRelic support for artefacts built with sbt-native-
packager.

• sbt-spark: Spark application configurator.
• sbt-api-builder: support for ApiBuilder from within sbt’s shell.

120

https://github.com/delprks/sbt-trace
https://github.com/leobenkel/safety_plugin
https://stringbean.github.io/sbt-dependency-lock
https://github.com/djice/sbt-unzip-plugin
https://www.playframework.com
https://www.scala-js.org
https://github.com/earldouglas/xsbt-web-plugin
https://github.com/sbt/sbt-web
https://github.com/vmunier/sbt-web-scalajs
https://github.com/sbt/sbt-less
https://github.com/sbt/sbt-js-engine
https://github.com/joost-de-vries/sbt-typescript
https://github.com/sbt/sbt-uglify
https://github.com/andriimartynov/sbt-terser
https://github.com/sbt/sbt-digest
https://github.com/scalatra/sbt-scalatra
https://github.com/ThoughtWorksInc/sbt-scala-js-map
https://github.com/sbt/sbt-gzip
https://github.com/sbt/sbt-stylus
https://github.com/sake92/sbt-hepek
https://chiselapp.com/user/twenstar/repository/sbt-puresass
https://github.com/sbt/sbt-web
https://github.com/swachter/scala-ts
https://github.com/scalikejdbc/scalikejdbc
https://github.com/localytics/sbt-dynamodb
https://github.com/LeonhardtDavid/migrations
https://github.com/gilt/sbt-newrelic
https://github.com/alonsodomin/sbt-spark
https://github.com/sirocchj/sbt-api-builder

Code generator plugins

• sbt-buildinfo: generate Scala code from SBT setting keys.
• sbt-scalaxb: generate model classes from XML schemas and WSDL.
• sbt-protobuf: protobuf code generator.
• sbt-header: auto-generate source code file headers (such as copyright no-

tices).
• sbt-boilerplate: TupleX and FunctionX boilerplate code generator.
• sbt-avro: Apache Avro schema and protocol generator.
• sbt-aspectj: AspectJ weaving for sbt.
• sbt-protoc: protobuf code generator using protoc.
• sbt-contraband (docs): generate pseudo-case classes from GraphQL

schemas.
• sbt-antlr4: run ANTLR v4 from sbt.
• sbt-sql: generate model classes from SQL.
• sbt-partial-unification: enable partial unification support in Scala (SI-

2712).
• sbt-i18n: transform your i18n bundles into Scala code.
• sbt-lit: build literate code with sbt.
• sbt-embedded-files: generate Scala objects containing the contents of glob-

specified files as strings or byte-arrays.
• sbt-scala-ts: generate TypeScript code according compiled Scala types

(case class, trait, object, …).

Static code analysis plugins

• wartremover: flexible Scala linting tool.
• scalastyle-sbt-plugin: code style checking using Scalastyle.
• sbt-scapegoat: static analysis using Scapegoat.
• sbt-stats: generate source code statistics (lines of code etc).
• sbt-scalafix: refactoring and linting tool for Scala using Scalafix.
• sbt-explicit-dependencies: check that you have declared all your library

dependencies correctly
• sbt-taglist: find tags within source files (such as TODO and FIXME).
• sbt-rewarn: always display compilation warnings, despite the incremental

compilation.
• sbt-jcheckstyle: Java code style checking using Checkstyle.
• sbt-sonar: integration with SonarQube.
• sbt-scala2plantuml: generates PlantUML diagrams from Scala code.

Code coverage plugins

• sbt-scoverage: Scala code coverage using Scoverage.
• sbt-jacoco: Scala and Java code coverage using JaCoCo.

121

https://github.com/sbt/sbt-buildinfo
https://github.com/eed3si9n/scalaxb
https://github.com/sbt/sbt-protobuf
https://github.com/sbt/sbt-header
https://github.com/sbt/sbt-boilerplate
https://github.com/cavorite/sbt-avro
https://github.com/sbt/sbt-aspectj
https://github.com/thesamet/sbt-protoc
https://github.com/sbt/contraband
https://www.scala-sbt.org/contraband
https://github.com/ihji/sbt-antlr4
https://github.com/xerial/sbt-sql
https://github.com/fiadliel/sbt-partial-unification
https://github.com/ant8e/sbt-i18n
https://github.com/earldouglas/sbt-lit
https://github.com/yurique/embedded-files
https://github.com/scala-ts/scala-ts/
https://github.com/wartremover/wartremover
https://github.com/scalastyle/scalastyle-sbt-plugin
https://github.com/sksamuel/sbt-scapegoat
https://github.com/orrsella/sbt-stats
https://scalacenter.github.io/scalafix/
https://github.com/cb372/sbt-explicit-dependencies
https://github.com/johanandren/sbt-taglist
https://github.com/rtimush/sbt-rewarn
https://github.com/xerial/sbt-jcheckstyle
https://github.com/mwz/sbt-sonar
https://www.sonarqube.org
https://github.com/BotTech/scala2plantuml
https://plantuml.com/
https://github.com/scoverage/sbt-scoverage
https://github.com/sbt/sbt-jacoco

Create new project plugins

• sbt-fresh: create an opinionated fresh sbt project.

In-house plugins

• sbt-houserules: houserules settings for sbt modules.

Verification plugins

• sbt-stainless: verify Scala or Dotty code using stainless.

Language support plugins

• sbt-frege: build Frege code with sbt.
• sbt-cc: compile C and C++ source files with sbt.

Community Repository Policy

The community repository has the following guideline for artifacts published to
it:

1. All published artifacts are the authors own work or have an appropriate
license which grants distribution rights.

2. All published artifacts come from open source projects, that have an open
patch acceptance policy.

3. All published artifacts are placed under an organization in a DNS domain
for which you have the permission to use or are an owner (scala-sbt.org is
available for sbt plugins).

4. All published artifacts are signed by a committer of the project (coming
soon).

Bintray For Plugins

We no longer use Bintray to host plugins.

First and foremost, we would like to thank JFrog for their continued support of
sbt project and the Scala ecosystem. Between 2014 and April, 2021 sbt hosted
its community plugin repository on bintray.com/sbt.

When JFrog sunsetted their Bintray product, they have proactively contacted
us and granted Scala Center open source sponsorship that allows us to use an
online Artifactory instance.

As of 2021-04-18, we have migrated all sbt plugins and sbt 0.13 artifacts to
the Artifactory instance, and redirected https://repo.scala-sbt.org/scalasbt/ to

122

https://github.com/sbt/sbt-fresh
https://github.com/sbt/sbt-houserules
https://github.com/NiceKingWei/sbt-stainless
https://github.com/earldouglas/sbt-frege
https://github.com/tnakamot/sbt-cc
https://bintray.com/sbt
https://repo.scala-sbt.org/scalasbt/

point to it as well, so existing builds should continue to work without making
any changes today and after May 1st. For plugin hosting, we will operate this
as a read-only repository. Any new plugin releases should migrate to using
Sonatype OSS.

Using Sonatype

Deploying to sonatype is easy! Just follow these simple steps:

Sonatype setup

The reference process for configuring and publishing to Sonatype is described
in their OSSRH Guide. In short, you need two publicly available URLs:

• the website of the project e.g. https://github.com/sonatype/nexus-public
• the project’s source code e.g. https://github.com/sonatype/nexus-

public.git

The OSSRH Guide walks you through the required process of setting up the
account with Sonatype. It’s as simple as creating a Sonatype’s JIRA account
and then a New Project ticket. When creating the account, try to use the same
domain in your email address that the project is hosted on. It makes it easier for
Sonatype to validate the relationship with the groupId requested in the ticket,
but it is not the only method used to confirm the ownership.

Creation of the New Project ticket is as simple as:

• providing the name of the library in the ticket’s subject,
• naming the groupId for distributing the library (make sure it matches

the root package of your code). Sonatype provides additional hints on
choosing the right groupId for publishing your library in Choosing your
coordinates guide.

• providing the SCM and Project URLs to the source code and homepage
of the library.

After creating your Sonatype account on JIRA, you can log in to the Nexus
Repository Manager using the same credentials, although this is not required in
the guide, it can be helpful later to check on published artifacts.

Note: Sonatype advises that responding to a New Project ticket
might take up to two business days, but in my case it was a few
minutes.

123

Using-Sonatype.html
https://central.sonatype.org/publish/publish-guide/
https://central.sonatype.org/publish/publish-guide/
https://issues.sonatype.org/secure/Signup!default.jspa
https://issues.sonatype.org/secure/CreateIssue.jspa?issuetype=21&pid=10134
https://central.sonatype.org/publish/requirements/coordinates/
https://central.sonatype.org/publish/requirements/coordinates/
https://oss.sonatype.org/#welcome
https://oss.sonatype.org/#welcome

sbt setup

To address Sonatype’s [requirements] sonatype-requirements for publishing to
the central repository and to simplify the publishing process, you can use two
community plugins. The sbt-pgp plugin can sign the files with GPG/PGP.
(Optionally sbt-sonatype can publish to a Sonatype repository nicer.)

step 1: PGP Signatures

Follow Working with PGP Signatures.

First, you should install GnuPG, and verify the version:

$ gpg --version
gpg (GnuPG/MacGPG2) 2.2.8
libgcrypt 1.8.3
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>

Next generate a key:

$ gpg --gen-key

List the keys:

$ gpg --list-keys

/home/foo/.gnupg/pubring.gpg

pub rsa4096 2018-08-22 [SC]
1234517530FB96F147C6A146A326F592D39AAAAA

uid [ultimate] your name <you@example.com>
sub rsa4096 2018-08-22 [E]

Distribute the key:

$ gpg --keyserver keyserver.ubuntu.com --send-keys 1234517530FB96F147C6A146A326F592D39AAAAA

step 2: sbt-pgp

With the PGP key you want to use, you can sign the artifacts you want to pub-
lish to the Sonatype repository with the sbt-pgp plugin. Follow the instructions
for the plugin and you’ll have PGP signed artifacts in no time.

In short, add the following line to your ~/.sbt/1.0/plugins/gpg.sbt file to
enable it globally for SBT projects:

addSbtPlugin("com.github.sbt" % "sbt-pgp" % "2.1.2")

124

https://central.sonatype.org/publish/requirements/
https://github.com/sbt/sbt-pgp#sbt-pgp
https://github.com/xerial/sbt-sonatype
https://central.sonatype.org/pages/working-with-pgp-signatures.html
https://www.gnupg.org/download/
https://github.com/sbt/sbt-pgp#sbt-pgp

Note: The plugin is a solution to sign artifacts. It works with the
GPG command line tool.

Make sure that the gpg command is in PATH available to the sbt.

step 3: Credentials

The credentials for your Sonatype OSSRH account need to be stored
somewhere safe (e.g. NOT in the repository). Common convention is a
$HOME/.sbt/1.0/sonatype.sbt file, with the following:

credentials += Credentials(Path.userHome / ".sbt" / "sonatype_credentials")

Next create a file ~/.sbt/sonatype_credentials:

realm=Sonatype Nexus Repository Manager
host=oss.sonatype.org
user=<your username>
password=<your password>

Note: The first two strings must be "Sonatype Nexus Repository
Manager" and "oss.sonatype.org" for Coursier to use the
credentials. If you are using a new OSSRH account created
after February 2021, use "s01.oss.sonatype.org" instead of
"oss.sonatype.org"

step 4: Configure build.sbt

To publish to a maven repository, you’ll need to configure a few settings so that
the correct metadata is generated.

Add these settings at the end of build.sbt or a separate publish.sbt:

ThisBuild / organization := "com.example.project2"
ThisBuild / organizationName := "example"
ThisBuild / organizationHomepage := Some(url("http://example.com/"))

ThisBuild / scmInfo := Some(
ScmInfo(
url("https://github.com/your-account/your-project"),
"scm:git@github.com:your-account/your-project.git"

)
)
ThisBuild / developers := List(
Developer(
id = "Your identifier",
name = "Your Name",
email = "your@email",
url = url("http://your.url")

125

)
)

ThisBuild / description := "Some description about your project."
ThisBuild / licenses := List(
"Apache 2" -> new URL("http://www.apache.org/licenses/LICENSE-2.0.txt")

)
ThisBuild / homepage := Some(url("https://github.com/example/project"))

// Remove all additional repository other than Maven Central from POM
ThisBuild / pomIncludeRepository := { _ => false }
ThisBuild / publishTo := {
// For accounts created after Feb 2021:
// val nexus = "https://s01.oss.sonatype.org/"
val nexus = "https://oss.sonatype.org/"
if (isSnapshot.value) Some("snapshots" at nexus + "content/repositories/snapshots")
else Some("releases" at nexus + "service/local/staging/deploy/maven2")

}
ThisBuild / publishMavenStyle := true

The full format of a pom.xml (an end product of the project configuration used
by Maven) file is outlined here. You can add more data to it with the pomExtra
option in build.sbt.

step 5: Publishing

From sbt shell run:

> publishSigned

Check the published artifacts in the Nexus Repository Manager (same login as
Sonatype’s Jira account).

Close the staging repository and promote the release to central, by hitting
“Close” button, then “Release” button.

Optional steps

sbt-sonatype

Note: sbt-sonatype is a third-party plugin meaning it is not covered
by Lightbend subscription.

To simplify the usage of the Sonatype’s Nexus, add the following line to
project/plugins.sbt to import the sbt-sonatype plugin to your project:

addSbtPlugin("org.xerial.sbt" % "sbt-sonatype" % "3.9.13")

126

https://maven.apache.org/pom.html
https://oss.sonatype.org/#welcome
https://github.com/xerial/sbt-sonatype

This plugin will facilitate the publishing process, but in short, these are the
main steps for publishing the libraries to the repository:

1. Create a new staging repository: sonatypeOpen "your groupId" "Some
staging name"

2. Sign and publish the library to the staging repository: publishSigned
3. You can and should check the published artifacts in the Nexus Repository

Manager (same login as Sonatype’s Jira account)
4. Close the staging repository and promote the release to central:

sonatypeRelease

Below are some important keys to take note of when using this plugin. Read
here for more information.

// This becomes a simplified version of the above key.
publishTo := sonatypePublishToBundle.value
// Set this to the same value set as your credential files host.
sonatypeCredentialHost := "oss.sonatype.org"
// Set this to the repository to publish to using `s01.oss.sonatype.org`
// for accounts created after Feb. 2021.
sonatypeRepository := "https://oss.sonatype.org/service/local"

After publishing you have to follow the release workflow of Nexus.

Note: the sbt-sonatype plugin can also be used to publish to other
non-sonatype repositories

Publishing tips

Use staged releases to test across large projects of independent releases before
pushing the full project.

Note: An error message of PGPException: checksum mismatch at
0 of 20 indicates that you got the passphrase wrong. We have
found at least on OS X that there may be issues with characters
outside the 7-bit ASCII range (e.g. Umlauts). If you are absolutely
sure that you typed the right phrase and the error doesn’t disappear,
try changing the passphrase.

Note: If you are using a new OSSRH account created af-
ter February 2021, use "s01.oss.sonatype.org" instead of
"oss.sonatype.org"

Integrate with the release process

Note: sbt-release is a third-party plugin meaning it is not covered
by Lightbend subscription.

127

https://oss.sonatype.org/#welcome
https://oss.sonatype.org/#welcome
https://github.com/xerial/sbt-sonatype
https://github.com/xerial/sbt-sonatype
https://central.sonatype.org/publish/release/

To automate the publishing approach above with the [sbt-release plugin]
sbt-release, you should simply add the publishing commands as steps in the
releaseProcess task:

...
releaseStepCommand("sonatypeOpen \"your groupId\" \"Some staging name\""),
...
releaseStepCommand("publishSigned"),
...
releaseStepCommand("sonatypeRelease"),
...

Contributing to sbt

Below is a running list of potential areas of contribution. This list may become
out of date quickly, so you may want to check on the sbt-dev mailing list if you
are interested in a specific topic.

1. There are plenty of possible visualization and analysis opportunities.
• ‘compile’ produces an Analysis of the source code containing

– Source dependencies
– Inter-project source dependencies
– Binary dependencies (jars + class files)
– data structure representing the API of the source code There

is some code already for generating dot files that isn’t hooked
up, but graphing dependencies and inheritance relationships is a
general area of work.

• ‘update’ produces an Update Report mapping Configura-
tion/ModuleID/Artifact to the retrieved File

• Ivy produces more detailed XML reports on dependencies. These
come with an XSL stylesheet to view them, but this does not scale to
large numbers of dependencies. Working on this is pretty straightfor-
ward: the XML files are created in ~/.ivy2 and the .xsl and .css
are there as well, so you don’t even need to work with sbt. Other
approaches described in the email thread

• Tasks are a combination of static and dynamic graphs and it would
be useful to view the graph of a run

• Settings are a static graph and there is code to generate the dot files,
but isn’t hooked up anywhere.

2. There is support for dependencies on external projects, like on GitHub. To
be more useful, this should support being able to update the dependencies.
It is also easy to extend this to other ways of retrieving projects. Support
for svn and hg was a recent contribution, for example.

3. If you like parsers, sbt commands and input tasks are written using cus-
tom parser combinators that provide tab completion and error handling.
Among other things, the efficiency could be improved.

128

https://github.com/sbt/sbt-release
https://groups.google.com/d/forum/sbt-dev
https://github.com/sbt/zinc/tree/v1.1.0/internal/compiler-interface
Update-Report.html
https://groups.google.com/group/simple-build-tool/browse_thread/thread/7761f8b2ce51f02c/129064ea836c9baf

4. The javap task hasn’t been reintegrated
5. Implement enhanced 0.11-style warn/debug/info/error/trace commands.

Currently, you set it like any other setting:

set logLevel := Level.Warn

or set Test / logLevel := Level.Warn

You could make commands that wrap this, like:

warn Test/run

Also, trace is currently an integer, but should really be an abstract data type.

6. Each sbt version has more aggressive incremental compilation and repro-
ducing bugs can be difficult. It would be helpful to have a mode that
generates a diff between successive compilations and records the options
passed to scalac. This could be replayed or inspected to try to find the
cause.

Documentation

1. There’s a lot to do with this documentation. If you check it out from git,
there’s a directory called Dormant with some content that needs going
through.

2. the main page mentions external project references (e.g. to a git reposi-
tory) but doesn’t have anything to link to that explains how to use those.

3. API docs are much needed.
4. Find useful answers or types/methods/values in the other docs, and pull

references to them up into /faq or /Name-Index so people can find the
docs. In general the /faq should feel a bit more like a bunch of pointers
into the regular docs, rather than an alternative to the docs.

5. A lot of the pages could probably have better names, and/or little 2-4
word blurbs to the right of them in the sidebar.

Changes

These are changes made in each sbt release.

Migrating from sbt 0.13.x

Migrating case class .copy(...)

Many of the case classes are replaced with pseudo case classes generated us-
ing Contraband. Migrate .copy(foo = xxx) to withFoo(xxx). Suppose you

129

have m: ModuleID, and you’re currently calling m.copy(revision = "1.0.1").
Here how you can migrate it:

m.withRevision("1.0.1")

SbtPlugin

sbt 0.13, sbt 1.0, and sbt 1.1 required sbtPlugin setting and scripted plugin to
develop an sbt plugin. sbt 1.2.1 combined both into SbtPlugin plugin.

Remove scripted-plugin from project/plugins.sbt, and just use:

lazy val root = (project in file("."))
.enablePlugins(SbtPlugin)

sbt version specific source directory

If you are cross building an sbt plugin, one escape hatch we have is
sbt version specific source directory src/main/scala-sbt-0.13 and
src/main/scala-sbt-1.0. In there you can define an object named
PluginCompat as follows:

package sbtfoo

import sbt._
import Keys._

object PluginCompat {
type UpdateConfiguration = sbt.librarymanagement.UpdateConfiguration

def subMissingOk(c: UpdateConfiguration, ok: Boolean): UpdateConfiguration =
c.withMissingOk(ok)

}

Now subMissingOk(...) function can be implemented in sbt version specific
way.

Migrating to slash syntax

In sbt 0.13 keys were scoped with 2 different syntaxes: one for sbt’s shell and
one for in code.

• sbt 0.13 shell: <project-id>/config:intask::key
• sbt 0.13 code: key in (<project-id>, Config, intask)

Starting sbt 1.1.0, the syntax for scoping keys has been unified for both the shell
and the build definitions to the slash syntax as follows:

• <project-id> / Config / intask / key

130

Here are some examples:

version in ThisBuild := "1.0.0-SNAPSHOT"

lazy val root = (project in file("."))
.settings(
name := "hello",
scalacOptions in Compile += "-Xlint",
scalacOptions in (Compile, console) --= Seq("-Ywarn-unused", "-Ywarn-unused-import"),
fork in Test := true

)

They are now written as:

ThisBuild / version := "1.0.0-SNAPSHOT"

lazy val root = (project in file("."))
.settings(
name := "hello",
Compile / scalacOptions += "-Xlint",
Compile / console / scalacOptions --= Seq("-Ywarn-unused", "-Ywarn-unused-import"),
Test / fork := true

)

And now the same syntax in sbt’s shell:

sbt:hello> name
[info] hello
sbt:hello> ThisBuild / version
[info] 1.0.0-SNAPSHOT
sbt:hello> show Compile / scalacOptions
[info] * -Xlint
sbt:hello> show Compile / console / scalacOptions
[info] * -Xlint
sbt:hello> Test / fork
[info] true

There’s a syntactic Scalafix rule for unified slash syntax to semi-automatically
rewrite existing sbt 0.13 syntax to the slash syntax. Currently it requires the
use of scalafix CLI and it’s not very precise (because it’s a syntactic rule that
only looks at the shape of the code) but it gets most of the job done.

$ scalafix --rules=https://gist.githubusercontent.com/eed3si9n/57e83f5330592d968ce49f0d5030d4d5/raw/7f576f16a90e432baa49911c9a66204c354947bb/Sbt0_13BuildSyntax.scala *.sbt project/*.scala

Migrating from sbt 0.12 style

Before sbt 0.13 (sbt 0.9 to 0.12) it was very common to see in builds the usage
of three aspects of sbt:

131

https://eed3si9n.com/syntactic-scalafix-rule-for-unified-slash-syntax

• the key dependency operators: <<=, <+=, <++=
• the tuple enrichments (apply and map) for TaskKey’s and SettingKey’s

(eg. (foo, bar) map { (f, b) => ... })
• the use of Build trait in project/Build.scala

The release of sbt 0.13 (which was over 3 years ago!) introduced the .value DSL
which allowed for much easier to read and write code, effectively making the first
two aspects redundant and they were removed from the official documentation.

Similarly, sbt 0.13’s introduction of multi-project build.sbt made the Build
trait redundant. In addition, the auto plugin feature that’s now standard in sbt
0.13 enabled automatic sorting of plugin settings and auto import feature, but
it made Build.scala more difficult to maintain.

As they are removed in sbt 1.0.0, and here we’ll help guide you to how to migrate
your code.

Migrating sbt 0.12 style operators

With simple expressions such as:

a <<= aTaskDef
b <+= bTaskDef
c <++= cTaskDefs

it is sufficient to replace them with the equivalent:

a := aTaskDef.value
b += bTaskDef.value
c ++= cTaskDefs.value

Migrating from the tuple enrichments

As mentioned above, there are two tuple enrichments .apply and .map. The
difference used to be for whether you’re defining a setting for a SettingKey or
a TaskKey, you use .apply for the former and .map for the latter:

val sett1 = settingKey[String]("SettingKey 1")
val sett2 = settingKey[String]("SettingKey 2")
val sett3 = settingKey[String]("SettingKey 3")

val task1 = taskKey[String]("TaskKey 1")
val task2 = taskKey[String]("TaskKey 2")
val task3 = taskKey[String]("TaskKey 3")
val task4 = taskKey[String]("TaskKey 4")

sett1 := "s1"
sett2 := "s2"
sett3 <<= (sett1, sett2)(_ + _)

132

task1 := { println("t1"); "t1" }
task2 := { println("t2"); "t2" }
task3 <<= (task1, task2) map { (t1, t2) => println(t1 + t2); t1 + t2 }
task4 <<= (sett1, sett2) map { (s1, s2) => println(s1 + s2); s1 + s2 }

(Remember you can define tasks in terms of settings, but not the other way
round)

With the .value DSL you don’t have to know or remember if your key is a
SettingKey or a TaskKey:

sett1 := "s1"
sett2 := "s2"
sett3 := sett1.value + sett2.value

task1 := { println("t1"); "t1" }
task2 := { println("t2"); "t2" }
task3 := { println(task1.value + task2.value); task1.value + task2.value }
task4 := { println(sett1.value + sett2.value); sett1.value + sett2.value }

Migrating when using .dependsOn, .triggeredBy or .runBefore

When instead calling .dependsOn, instead of:

a <<= a dependsOn b

define it as:

a := (a dependsOn b).value

Note: You’ll need to use the <<= operator with .triggeredBy and .runBefore
in sbt 0.13.13 and earlier due to issue #1444.

Migrating when you need to set Tasks

For keys such as sourceGenerators and resourceGenerators which use sbt’s
Task type:

val sourceGenerators =
settingKey[Seq[Task[Seq[File]]]]("List of tasks that generate sources")

val resourceGenerators =
settingKey[Seq[Task[Seq[File]]]]("List of tasks that generate resources")

Where you previous would define things as:

sourceGenerators in Compile <+= buildInfo

for sbt 1, you define them as:

Compile / sourceGenerators += buildInfo

133

https://github.com/sbt/sbt/issues/1444

or in general,

Compile / sourceGenerators += Def.task { List(file1, file2) }

Migrating with InputKey

When using InputKey instead of:

run <<= docsRunSetting

when migrating you mustn’t use .value but .evaluated:

run := docsRunSetting.evaluated

Migrating from the Build trait

With Build trait based build such as:

import sbt._
import Keys._
import xyz.XyzPlugin.autoImport._

object HelloBuild extends Build {
val shared = Defaults.defaultSettings ++ xyz.XyzPlugin.projectSettings ++ Seq(
organization := "com.example",
version := "0.1.0",
scalaVersion := "2.12.18")

lazy val hello =
Project("Hello", file("."),
settings = shared ++ Seq(
xyzSkipWrite := true)

).aggregate(core)

lazy val core =
Project("hello-core", file("core"),
settings = shared ++ Seq(
description := "Core interfaces",
libraryDependencies ++= scalaXml.value)

)

def scalaXml = Def.setting {
scalaBinaryVersion.value match {

case "2.10" => Nil
case _ => ("org.scala-lang.modules" %% "scala-xml" % "1.0.6") :: Nil

}

134

}
}

You can migrate to build.sbt:

val shared = Seq(
organization := "com.example",
version := "0.1.0",
scalaVersion := "2.12.18"

)

lazy val helloRoot = (project in file("."))
.aggregate(core)
.enablePlugins(XyzPlugin)
.settings(
shared,
name := "Hello",
xyzSkipWrite := true

)

lazy val core = (project in file("core"))
.enablePlugins(XyzPlugin)
.settings(
shared,
name := "hello-core",
description := "Core interfaces",
libraryDependencies ++= scalaXml.value

)

def scalaXml = Def.setting {
scalaBinaryVersion.value match {

case "2.10" => Nil
case _ => ("org.scala-lang.modules" %% "scala-xml" % "1.0.6") :: Nil

}
}

1. Rename project/Build.scala to build.sbt.
2. Remove import statements import sbt._, import Keys._, and any auto

imports.
3. Move all of the inner definitions (like shared, helloRoot, etc) out of the

object HelloBuild, and remove HelloBuild.
4. Change Project(...) to (project in file("x")) style, and call its

settings(...) method to pass in the settings. This is so the auto plugins
can reorder their setting sequence based on the plugin dependencies. name
setting should be set to keep the old names.

5. Remove Defaults.defaultSettings out of shared since these
settings are already set by the built-in auto plugins, also re-

135

move xyz.XyzPlugin.projectSettings out of shared and call
enablePlugins(XyzPlugin) instead.

Note: Build traits is deprecated, but you can still use project/*.scala file
to organize your build and/or define ad-hoc plugins. See Organizing the build.

Migrating from Resolver.withDefaultResolvers

In 0.13.x, you use other repositories instead of the Maven Central repository:

externalResolvers := Resolver.withDefaultResolvers(resolvers.value, mavenCentral = false)

After 1.x, withDefaultResolvers was renamed to combineDefaultResolvers.
In the meantime, one of the parameters, userResolvers, was changed to Vector
instead of Seq.

• You can use toVector to help migration.

externalResolvers := Resolver.combineDefaultResolvers(resolvers.value.toVector, mavenCentral = false)

• You can use Vector directly too.

sbt 1.4.x releases

sbt 1.4.1

• Fixes sbt new not echoing back the characters #5954 by [@eatkins][@eatkins]

• Fixes compiler error reporting in Zinc zinc#931 by [@adpi2][@adpi2]

• Fixes dependencyBrowseTree etc #5967 by [@naderghanbari][@naderghanbari]

• Fixes Scala 2.13-3.0 sandwich support for Scala.JS #5984 by [@xuwei-
k][@xuwei-k]

• Work around classes directory causing “classes does not exist” error
zinc#934 by [@eed3si9n][@eed3si9n]

• Adds logging to ClassfileManager output #5990 by [@smarter][@smarter]

• Fixes Ctrl-C and Ctrl-D handling #5947/#5975 by [@eatkins][@eatkins]

• Fixes -Dsbt.color=true not working in some situation #5960 by
[@eatkins][@eatkins]

• Fixes FileAlreadyExistsException when project/target is a symbolic
link #5972 by [@eatkins][@eatkins]

• Fixes ANSI control character appearing in piped output #5966 by
[@eatkins][@eatkins]

• Fixes line reading issue with jEdit #5946 by [@eatkins][@eatkins]

136

Organizing-Build.html
https://github.com/sbt/sbt/pull/5954
https://github.com/sbt/zinc/pull/931
https://github.com/sbt/sbt/pull/5967
https://github.com/sbt/sbt/pull/5984
https://github.com/sbt/zinc/pull/934
https://github.com/sbt/sbt/pull/5990
https://github.com/sbt/sbt/pull/5947
https://github.com/sbt/sbt/pull/5975
https://github.com/sbt/sbt/pull/5960
https://github.com/sbt/sbt/pull/5972
https://github.com/sbt/sbt/pull/5966
https://github.com/sbt/sbt/pull/5946

• Fixes sbt hanging on invalid build.sbt and --batch #5945 by
[@eatkins][@eatkins]

• Fixes .inputrc file support #5973 by [@xuwei-k][@xuwei-k]

• Fixes BSP warning diagnostics disappearing on recompilation #5950 by
[@adpi2][@adpi2]

• Fixes BSP support for custom configurations #5930 by [@adpi2][@adpi2]

• Fixes custom reporter causing MatchError #5948 by [@adpi2][@adpi2]

• Fixes shellPrompt and release* keys warning on build linting
#5983/#5991 by [@xirc][@xirc] and [@eed3si9n][@eed3si9n]

• Fixes <task>.value macro causing spurious “a pure expression does noth-
ing” warning #5981 by [@eed3si9n][@eed3si9n]

• Preserves SemanticDB files in remote cache #5961 by [@xuwei-k][@xuwei-
k]

• Adds AdoptOpenJDK support for JDK cross building #5964 by [@rdes-
groppes][@rdesgroppes]

• Improves plugins command output by grouping by subproject #5932 by
[@aaabramov][@aaabramov]

[@adpi2]: https://github.com/adpi2 [@eed3si9n]: https://github.com/eed3si9n
[@eatkins]: https://github.com/eatkins [@xuwei-k]: https://github.com/xuwei-
k [@rdesgroppes]: https://github.com/rdesgroppes [@naderghanbari]:
https://github.com/naderghanbari [@aaabramov]: https://github.com/aaabramov
[@xirc]: https://github.com/xirc [@smarter]: https://github.com/smarter

sbt 1.4.0

The headline features of sbt 1.4.0 are:

• build server protocol (BSP) support
• sbtn: a native thin client for sbt
• build caching
• ThisBuild / versionScheme to take the guessing out of eviction warning

Build server protocol (BSP) support

sbt 1.4.0 adds build server protocol (BSP) support, contributed by
Scala Center. Main implementation was done by Adrien Piquerez
([@adpi2](https://twitter.com/adrienpi2)) based on [@eed3si9n](https://twitter.com/eed3si9n)’s
prototype.

137

https://github.com/sbt/sbt/pull/5945
https://github.com/sbt/sbt/pull/5973
https://github.com/sbt/sbt/issues/5950
https://github.com/sbt/sbt/pull/5930
https://github.com/sbt/sbt/pull/5948
https://github.com/sbt/sbt/pull/5983
https://github.com/sbt/sbt/pull/5991
https://github.com/sbt/sbt/pull/5981
https://github.com/sbt/sbt/pull/5961
https://github.com/sbt/sbt/pull/5964
https://github.com/sbt/sbt/pull/5932
https://contributors.scala-lang.org/t/build-server-protocol-in-sbt/4234

When sbt 1.4.0 starts, it will create a file named .bsp/sbt.json containing
a machine-readable instruction on how to run sbt -bsp, which is a command
line program that uses standard input and output to communicate to sbt server
using build server protocol.

How to import to IntelliJ using BSP

1. Start sbt in a terminal
2. Open IntelliJ IDEA 2020.1.2 or later
3. Select “Open or import”, and select “BSP Project”

How to import to VS Code + Metals

1. Delete existing .bsp, .metals, .bloop directories if any
2. Open VS Code in the working directory
3. Ignore the prompt to import the project
4. Start sbt -Dsbt.semanticdb=true in the Terminal tab. Wait till it dis-

plays “sbt server started”
5. Navigate to Metals view, and select “Restart build server”
6. Type compile into the sbt session to generate SemanticDB files

#5538/#5443 by [@adpi2][@adpi2]

Native thin client

sbt 1.4.0 adds an official native thin client called sbtn that supports all tasks.
If you’re using the official sbt launcher 1.4.0 and not the knockoff kind you can
use --client option to run the native thin client:

$ sbt --client compile
$ sbt --client shutdown

The native thin client will run sbt (server) as a daemon, which avoids the JVM
spinup and loading time for the second call onwards. This could be an option
if you would like to use sbt from the system shell such as Zsh and Fish.

Remember to call sbt --client shutdown when you’re done! If you want to
enable this via an environment variable you can set SBT_NATIVE_CLIENT to
true. sbtn binary files are also available from https://github.com/sbt/sbtn-
dist/releases/tag/v1.4.0

#5620 by [@eatkins][@eatkins]

ThisBuild / versionScheme

sbt 1.4.0 adds a new setting called ThisBuild / versionScheme to track ver-
sion scheme of the build:

138

https://github.com/sbt/sbt/pull/5538
https://github.com/sbt/sbt/pull/5443
https://github.com/sbt/sbt/pull/5620

ThisBuild / versionScheme := Some("early-semver")

The supported values are "early-semver", "pvp", and "semver-spec". sbt will
include this information into pom.xml and ivy.xml as a property. In addition,
sbt 1.4.0 will use the information to take the guessing out of eviction warning
when this information is available. #5724 by [@eed3si9n][@eed3si9n]

VirtualFile + RemoteCache

sbt 1.4.0 / Zinc 1.4.0 virtualizes the file paths tracked during incremental compi-
lation. The benefit for this that the state of incremental compilation can shared
across different machines, as long as ThisBuild / rootPaths are enumerated
beforehand.

To demonstrate this, we’ve also added experimental cached compilation fea-
ture to sbt. All you need is the following setting:

ThisBuild / pushRemoteCacheTo := Some(MavenCache("local-cache", file("/tmp/remote-cache")))

Then from machine 1, call pushRemoteCache. This will publish the *.class
and Zinc Analysis artifacts to the location. Next, from machine 2, call
pullRemoteCache.

zinc#712/#5417 by [@eed3si9n][@eed3si9n]

Build linting

On start up, sbt 1.4.0 checks for unused settings/tasks. Because most settings
are on the intermediary to other settings/tasks, they are included into the linting
by default. The notable exceptions are settings used exclusively by a command.
To opt-out, you can either append it to Global / excludeLintKeys or set the
rank to invisible.

#5153 by [@eed3si9n][@eed3si9n]

Conditional task

sbt 1.4.0 adds support for conditional task (or Selective task), which is a new
kind of task automatically created when Def.task { ... } consists of an if-
expression:

bar := {
if (number.value < 0) negAction.value
else if (number.value == 0) zeroAction.value
else posAction.value

}

139

https://github.com/sbt/sbt/pull/5724
http://eed3si9n.com/cached-compilation-for-sbt
https://github.com/sbt/zinc/pull/712
https://github.com/sbt/sbt/pull/5417
https://github.com/sbt/sbt/pull/5153

Unlike the regular (Applicative) task composition, conditional tasks delays
the evaluation of then-clause and else-clause as naturally expected of an
if-expression. This is already possible with Def.taskDyn { ... }, but unlike
dynamic tasks, conditional task works with inspect command. See Selective
functor for sbt for more details. #5558 by [@eed3si9n][@eed3si9n]

Incremental build pipelining

sbt 1.4.0 adds experimental incremental build pipelining. To enable build
pipelining for the build:

ThisBuild / usePipelining := true

To opt-out of creating an early output for some of the subprojects:

exportPipelining := false

#5703 by [@eed3si9n][@eed3si9n]

sbt-dependency-graph is in-sourced

sbt 1.4.0 brings in Johannes Rudolph’s sbt-dependency-graph plugin into the
code base. Since it injects many tasks per subprojects, the plugin is split
into two parts: - MiniDependencyTreePlugin that is enabled by default,
bringing in dependencyTree task to Compile and Test configurations - Full
strength DependencyTreePlugin that is enabled by putting the following to
project/plugins.sbt:

addDependencyTreePlugin

Fixes with compatibility implications

• Replaces Apache Log4j with our own logger by default to avoid Appender
leakage. Use ThisBuild / useLog4J := true to use Log4j. #5731 by
[@eatkins][@eatkins]

• Makes JAR file creation repeatable by sorting entry by name and dropping
timestamps #5344/io#279 by [@raboof][@raboof]

• Loads bare settings in the alphabetic order of the build files #2697/#5447
by [@eed3si9n][@eed3si9n]

• Loads vals from top-to-bottom within a build file #2232/#5448 by
[@eed3si9n][@eed3si9n]

• HTTP resolvers require explicit opt-in using .withAllowInsecureProtocol(true)
#5593 by [@eed3si9n][@eed3si9n]

• Ctrl-C during triggered execution ~ returns to the shell instead of shutting
down sbt #5804 by [@eatkins][@eatkins]

140

http://eed3si9n.com/selective-functor-in-sbt
http://eed3si9n.com/selective-functor-in-sbt
https://github.com/sbt/sbt/pull/5558
https://github.com/sbt/sbt/pull/5703
https://github.com/sbt/sbt/pull/5731
https://github.com/sbt/sbt/pull/5344
https://github.com/sbt/io/pull/279
https://github.com/sbt/sbt/issues/2697
https://github.com/sbt/sbt/pull/5447
https://github.com/sbt/sbt/issues/2232
https://github.com/sbt/sbt/pull/5448
https://github.com/sbt/sbt/pull/5593
https://github.com/sbt/sbt/pull/5804

Other updates

• Updates shell to use JLine 3 for better tab completion #5671 by
[@eatkins][@eatkins]

• Adds support for Scala 2.13-3.0 sandwich #5767 by [@eed3si9n][@eed3si9n]
• Throws an error if you run sbt from / without -Dsbt.rootdir=true

#5112 by [@eed3si9n][@eed3si9n]
• Upates StateTransform to accept State => State #5260 by

[@eatkins][@eatkins]
• Fixes various issues around background run #5259 by [@eatkins][@eatkins]
• Turns off supershell when TERM is set to “dumb” #5278 by [@hvesalai][@hvesalai]
• Avoids using system temporary directories for logging #5289 by

[@eatkins][@eatkins]
• Adds library endpoint for sbt.ForkMain #5315 by [@olafurpg][@olafurpg]
• Avoids using last modified time of directories to invalidate doc #5362 by

[@eatkins][@eatkins]
• Fixes the default artifact of packageSrc for custom configuration #5403

by [@eed3si9n][@eed3si9n]
• Fixes task cancellation handling #5446/zinc#742 by [@azolotko][@azolotko]
• Adds toTaskable method injection to Initialize[A] for tuple syntax

#5439 by [@dwijnand][@dwijnand]
• Fixes the error message for an undefined setting #5469 by [@nigredo-

tori][@nigredo-tori]
• Updates semanticdbVersion to 4.3.7 #5481 by [@anilkumarmyla][@anilkumarmyla]
• Adds Tracked.outputChangedW and Tracked.inputChangedW which re-

quires typeclass evidence of JsonWriter[A] instead of JsonFormat[A]
#5513 by [@bjaglin][@bjaglin]

• Fixes various supershell interferences #5319 by [@eatkins][@eatkins]
• Adds extension methods to State to faciliate sbt server communication

#5207 by [@eed3si9n][@eed3si9n]
• Adds support for weighed tags for testGrouping #5527 by [@frosfor-

ever][@frosforever]
• Updates to sjson-new, which shades Jawn 1.0.0 #5595 by [@eed3si9n][@eed3si9n]
• Fixes NullPointerError when credential realm is null #5526 by

[@3rwww1][@3rwww1]
• Adds Def.promise for long-running tasks to communicate to another task

#5552 by [@eed3si9n][@eed3si9n]
• Uses Java’s timestamp on JDK 10+ as opposed to using native call io#274

by [@slandelle][@slandelle]
• Adds retry with backoff during publish (-Dsbt.repository.publish.attempts

set to 3) lm#340 by [@izharahmd][@izharahmd]
• Improves failure message for PUT lm#309 by [@swaldman][@swaldman]
• Adds provenance to AnalyzedClass zinc#786 by [@dwijnand][@dwijnand]

+ [@mspnf][@mspnf]
• Makes hashing childrenOfSealedClass stable zinc#788 by [@dwij-

141

https://github.com/sbt/sbt/pull/5671
https://github.com/sbt/sbt/pull/5767
https://github.com/sbt/sbt/pull/5112
https://github.com/sbt/sbt/pull/5260
https://github.com/sbt/sbt/pull/5259
https://github.com/sbt/sbt/pull/5278
https://github.com/sbt/sbt/pull/5289
https://github.com/sbt/sbt/pull/5315
https://github.com/sbt/sbt/pull/5362
https://github.com/sbt/sbt/pull/5403
https://github.com/sbt/sbt/pull/5446
https://github.com/sbt/zinc/pull/742
https://github.com/sbt/sbt/pull/5439
https://github.com/sbt/sbt/pull/5469
https://github.com/sbt/sbt/pull/5481
https://github.com/sbt/sbt/pull/5513
https://github.com/sbt/sbt/pull/5319
https://github.com/sbt/sbt/blob/develop/main/src/main/scala/sbt/UpperStateOps.scala
https://github.com/sbt/sbt/pull/5207
https://github.com/sbt/sbt/pull/5527
https://github.com/sbt/sbt/pull/5595
https://github.com/sbt/sbt/pull/5526
https://github.com/sbt/sbt/pull/5552
https://github.com/sbt/io/pull/274
https://github.com/sbt/librarymanagement/pull/340
https://github.com/sbt/librarymanagement/pull/309
https://github.com/sbt/zinc/pull/786
https://github.com/sbt/zinc/pull/788

nand][@dwijnand]
• Fixes performance regressions around build source monitoring #5530 by

[@eatkins][@eatkins]
• Fixes performance regressions around super shell #5531 by [@eatkins][@eatkins]
• Various performance improvements in Zinc zinc#756/zinc#763 by

[@retronym][@retronym]
• Adds a monitor to warn about excessive GC #5812 by [@eatkins][@eatkins]
• Fixes forked tests running tests twice when they match multiple finger-

prints #5800 by [@Duhemm][@Duhemm]

Participation

sbt 1.4.0 was brought to you by 34 contributors. Ethan Atkins, Eugene Yokota
(eed3si9n), Johannes Rudolph, Dale Wijnand, Adrien Piquerez, Jason Zaugg,
Arnout Engelen, Josh Soref, Guillaume Martres, Maksim Ochenashko, Anil Ku-
mar Myla, Brice Jaglin, Claudio Bley, João Ferreira, Steve Waldman, frosfor-
ever, Alex Zolotko, Heikki Vesalainen, Ismael Juma, Stephane Landelle, Jannik
Theiß, izharahmd, lloydmeta, Alexandre Archambault, Eric Peters, Erwan Quef-
felec, Kenji Yoshida (xuwei-k), Martin Duhem, Olafur Pall Geirsson, Renato
Cavalcanti, Vincent PERICART, nigredo-tori. Thanks!

[@eed3si9n]: https://github.com/eed3si9n [@eatkins]: https://github.com/eatkins
[@dwijnand]: https://github.com/dwijnand [@hvesalai]: https://github.com/hvesalai
[@olafurpg]: https://github.com/olafurpg [@raboof]: https://github.com/raboof
[@azolotko]: https://github.com/azolotko [@nigredo-tori]: https://github.com/nigredo-
tori [@anilkumarmyla]: https://github.com/anilkumarmyla [@bjaglin]:
https://github.com/bjaglin [@frosforever]: https://github.com/frosforever
[@adpi2]: https://github.com/adpi2 [@3rwww1]: https://github.com/3rwww1
[@slandelle]: https://github.com/slandelle [@swaldman]: https://github.com/swaldman
[@retronym]: https://github.com/retronym [@mspnf]: https://github.com/mspnf
[@iRevive]: https://github.com/iRevive [@Duhemm]: https://github.com/Duhemm
[@jtjeferreira]: https://github.com/jtjeferreira [@izharahmd]: https://github.com/izharahmd

sbt 1.3.x releases

sbt 1.3.0

This is the third feature release of sbt 1.x, a binary compatible release focusing
on new features. sbt 1.x is released under Semantic Versioning, and the
plugins are expected to work throughout the 1.x series.

The headline features of sbt 1.3 are out-of-box Coursier library management,
ClassLoader layering, IO improvements, and super shell. Combined together
we hope these features will improve the user experience of running your builds.

142

https://github.com/sbt/sbt/pull/5530
https://github.com/sbt/sbt/pull/5531
https://github.com/sbt/zinc/pull/756
https://github.com/sbt/zinc/pull/763
https://github.com/sbt/sbt/pull/5812
https://github.com/sbt/sbt/pull/5800
https://get-coursier.io/

Changes with compatibility implication

• Library management with Coursier. See below for details.
• Super shell. See below for details.
• Multi command no longer requires leading semicolon. clean;Test/compile;

would work. #4456 by @eatkins
• Deprecates HTTP resolvers, but allow localhost or resolvers marked

.withAllowInsecureProtocol(true) #4997
• Deprecates CrossVersion.Disabled. Please use CrossVersion.disabled

instead sbt/librarymanagement#316
• ClassLoader management: To prevent resource leaks, sbt 1.3.0 closes the

ephemeral ClassLoaders used by the run and test tasks after those tasks
complete. This may cause downstream crashes if the task uses Shutdown-
Hooks or if any threads created by the tasks continue running after the
task completes. To disable this behavior, either set Compile / run /
fork := true or run sbt with -Dsbt.classloader.close=false.

Library management with Coursier

sbt 1.3.0 adopts Coursier for the library management. Coursier is a dependency
resolver like Ivy, rewritten in Scala by Alexandre Archambault ([@alexarcham-
bault][@alexarchambault]), aiming to be a faster alternative.

Note: Under some situations, Coursier may not resolve the same way as Ivy
(for example remote -SNAPSHOTs are cached for 24 hours). If you wish to go back
to Apache Ivy for library management, put the following in your build.sbt:

ThisBuild / useCoursier := false

Many people were involved in the effort of bringing Coursier to sbt. Early
in 2018 Leonard Ehrenfried ([@leonardehrenfried][@leonardehrenfried]) started
the Coursier-backed LM API implementation as lm#190. During the fall,
it was further improved by Andrea Peruffo ([@andreaTP][@andreaTP]), and
lm-coursier eventually became part of coursier/sbt-coursier repository main-
tained by Alex. This spring, Eugene ([@eed3si9n][@eed3si9n]) revisited this
again to make a few more changes so we can swap out the LM engine in #4614
with the help from Alex.

Turbo mode with ClassLoader layering

sbt 1.3.0 adds “turbo” mode that enables experimental or advanced features
that might require some debugging by the build user when it doesn’t work.

ThisBuild / turbo := true

Initially we are putting the layered ClassLoader (ClassLoaderLayeringStrategy.AllLibraryJars)
behind this flag.

143

https://get-coursier.io/
https://github.com/sbt/librarymanagement/pull/190
https://github.com/sbt/sbt/pull/4614

sbt has always created two-layer ClassLoaders when evaluating the run and
test tasks. The top layer of the ClassLoader contains the scala library jars so
that the classes in the scala package may be reused across multiple task eval-
uations. The second layer loads the rest of the project classpath including the
library dependencies and project class files. sbt 1.3.0 introduces experimental
classLoaderLayeringStrategy feature that furthers this concept.

Compile / classLoaderLayeringStrategy := ClassLoaderLayeringStrategy.Flat
// default
Compile / classLoaderLayeringStrategy := ClassLoaderLayeringStrategy.ScalaLibrary
// enabled with turbo
Compile / classLoaderLayeringStrategy := ClassLoaderLayeringStrategy.AllLibraryJars

Test / classLoaderLayeringStrategy := ClassLoaderLayeringStrategy.Flat
// default
Test / classLoaderLayeringStrategy := ClassLoaderLayeringStrategy.ScalaLibrary
// enabled with turbo
Test / classLoaderLayeringStrategy := ClassLoaderLayeringStrategy.AllLibraryJars

• ClassLoaderLayeringStrategy.Flat includes all classes and JARs ex-
cept for the Java runtime. The behavior of tasks using this strategy should
be similar to forking without the overhead of starting a new jvm.

• ClassLoaderLayeringStrategy.ScalaLibrary creates a two-layer Class-
Loader where Scala standard library is kept warm, similar to sbt 1.2.x

• ClassLoaderLayeringStrategy.AllLibraryJars creates a three-layer
ClassLoader where library dependencies, in addition to Scala standard
libraries are kept warm

ClassLoaderLayeringStrategy.AllLibraryJars should benefit the response
time of run and test tasks. By caching the library jar classloader, the startup
latency of the run and test tasks can be reduced significantly when they are run
multiple times within the same session. GC pressure is also reduced because
libraries jars will not be reloaded every time the task is evaluated.

Note: ClassLoaderLayeringStrategy.AllLibraryJars reuses the singleton object
between the tests, which requires libraries to clean after itself.

ClassLoaderLayeringStrategy.Flat on the other hand will benefit certain
applications that do not work well with layered ClassLoaders. One such example
is Java serialization + serialization proxy pattern used by Scala collections.

ClassLoader layering was contributed by Ethan Atkins (@eatkins) as #4476

IO improvements

In addition to classloader layering, sbt 1.3.0 incorporates numerous performance
enhancements including:

144

• faster recursive directory listing – sbt internally uses a native library,
swoval, that provides a jni interface to native os apis that allow for faster
recursive directory listing than the implementations in the java standard
library.

• reduced latency of file change detection in continuous builds. In most
cases file events will trigger task evaluation within 10ms.

As of this writing sbt 1.3.0’s edit-compile-test loop for 5000 source files is faster
than that edit-compile-test with three source files using sbt 0.13, Gradle, and
other build tools we tested (see build performance for details). These changes
were contributed by Ethan Atkins (@eatkins).

Glob

sbt 1.3.0 introduces a new type, Glob, that describes a path search query.
For example, all of the scala sources in the project directory can be de-
scribed by Glob(baseDirectory.value, RecursiveGlob / "*.scala") or
baseDirectory.value.toGlob / ** / "*.scala", where ** is an alias for
RecursiveGlob. Glob expands on PathFinders but they can be composed with
no io overhead. Globs can be retrieved using a FileTreeView. For example,
one can write:

val scalaSources = baseDirectory.value.toGlob / ** / "*.scala"
val javaSources = baseDirectory.value.toGlob / ** / "*.java"
val allSources = fileTreeView.value.list(Seq(scalaSources, javaSources))

and the FileTreeView will only traverse the base directory once. Globs
and FileTreeView were added by Ethan Atkins ([@eatkins][@eatkins]) in
io#178,io#216,io#226

Watch improvements

sbt 1.3.0 introduces a new file monitoring implementation. It uses enhanced
apis for tracking file change events using os events. It adds a new parser that
extracts the specific task(s) for which it will monitor source files and rerun when
it detects changes. Only source dependencies of the running tasks are monitored.
For example, when running ~compile, changes to test source files will not trigger
a new build. Between file events, there are also now options to return to the shell,
rerun the previous command(s) or exit sbt. These changes were implemented
by Ethan Atkins ([@eatkins][@eatkins]) in io#178,#216,#226,#4512,#4627.

Build definition source watch

sbt 1.3.0 automatically watches the build definition sources and displays a warn-
ing if you execute a task without reloading. This can be configured to reload
automatically as follows:

145

https://github.com/swoval/swoval/blob/master/files/README.md
https://github.com/eatkins/scala-build-watch-performance
https://www.scala-sbt.org/1.x/docs/Paths.html#Path+Finders
https://github.com/sbt/io/pull/178
https://github.com/sbt/io/pull/216
https://github.com/sbt/io/pull/226
https://github.com/sbt/io/pull/178
https://github.com/sbt/io/pull/216
https://github.com/sbt/io/pull/226
https://github.com/sbt/sbt/pull/4512
https://github.com/sbt/sbt/pull/4627

Global / onChangedBuildSource := ReloadOnSourceChanges

This feature was contributed by Ethan Atkins ([@eatkins][@eatkins]) in #4664

Custom incremental tasks

sbt 1.3.0 provides support to implement custom incremental tasks based on files.
Given a custom task that returns java.nio.file.Path, Seq[java.nio.file.Path],
File, or Seq[File], you can define a few helper tasks to make it more incre-
mental.

import java.nio.file._
import scala.sys.process._
val gccCompile = taskKey[Seq[Path]]("compile C code using gcc")
val gccHeaders = taskKey[Seq[Path]]("header files")
val gccInclude = settingKey[Path]("include directory")
val gccLink = taskKey[Path]("link C code using gcc")

gccCompile / sourceDirectory := sourceDirectory.value
gccCompile / fileInputs += (gccCompile / sourceDirectory).value.toGlob / ** / "*.c"
gccInclude := (gccCompile / sourceDirectory).value.toPath / "include"
gccHeaders / fileInputs += gccInclude.value.toGlob / "*.h"
gccCompile / target := baseDirectory.value / "out"

gccCompile := {
val objectDir = Files.createDirectories((gccCompile / target).value.toPath / "objects")
def objectFile(path: Path): Path =
target.value.toPath / path.getFileName.toString.replaceAll(".c$", ".o")

Files.createDirectories(target.value.toPath)
val headerChanges = gccHeaders.inputFileChanges.hasChanges
val changes = gccCompile.inputFileChanges
changes.deleted.foreach(sf => Files.deleteIfExists(objectFile(sf)))
val sourceFileChanges = changes.created ++ changes.modified
val needRecompile = (sourceFileChanges ++ (if (headerChanges) changes.unmodified else Nil)).toSet

val logger = streams.value.log
gccCompile.inputFiles.map { sf =>

val of = objectFile(sf)
if (!Files.exists(of) || needRecompile(sf)) {
logger.info(s"Compiling $sf")
s"gcc -I${gccInclude.value} -c $sf -o $of".!!

}
of

}
}

Given this setup, gccCompile.inputFiles will return a sequence of all of the

146

https://github.com/sbt/sbt/pull/4664

input c source files, gccCompile.inputFileChanges returns a data structure
containing the created, deleted, modified and unmodified files since the last run
of gccCompile while gccHeaders.changedInputFiles returns the headers that
have changed since the last run of gccCompile. Taken together, these tasks can
be used to incrementally only rebuild the source files that need to be rebuilt
given the file system changes since the last time gccCompile completed.

In another task such as gccLink, the result of gccCompile can be tracked as
well using gccCompile.outputFileChanges.

gccLink := {
val library = (gccCompile / target).value.toPath / "libmylib.dylib"
val objectFiles = gccCompile.outputFiles
val logger = streams.value.log
if (!Files.exists(library) || gccCompile.outputFileChanges.hasChanges) {
logger.info(s"Rebuilding $library")
s"gcc -dynamiclib -o $library ${objectFiles mkString " "}".!!

}
library

}

The inputs of a task will automatically be monitored by the ~ command which
has a new parser that is context aware. A custom clean task is also implemented
for any task that generates file outputs. The clean tasks are aggregated across
the project and config scopes. For example, Test / clean will clean all of the
files generated by tasks in the Test config declared in the Test config but not
the files generated in the Compile config.

This feature was contributed by Ethan Atkins (@eatkins) in #4627.

Super shell

When running in an ANSI-compatible terminal, sbt 1.3.0 will display the cur-
rently running tasks. This gives the developer the idea of what tasks are being
processed in parallel, and where the build is spending its time. In homage to
Gradle’s “Rich Console” and Buck’s “Super Console”, we call ours “Super shell.”

To opt-out put the following in the build:

ThisBuild / useSuperShell := false

or run sbt with --supershell=false (or -Dsbt.supershell=false). This fea-
ture was added by Eugene Yokota ([@eed3si9n][@eed3si9n]) as #4396/util#196.

Tracing

To view the task breakdown visually, run sbt with --traces (or -Dsbt.traces=true).
This will generate build.traces file, which is viewable using Chrome Trac-

147

https://github.com/sbt/sbt/pull/4396
https://github.com/sbt/util/pull/196

ing chrome://tracing/. This feature was contributed by Jason Zaugg
([@retronym][@retronym]).

To output the task timings on screen, run sbt with --timings (or
-Dsbt.task.timings=true -Dsbt.task.timings.on.shutdown=true).

SemanticDB support

sbt 1.3.0 makes it easier to generate [SemanticDB][SemanticDB]. To enable the
generation of SemanticDB build-wide:

ThisBuild / semanticdbEnabled := true
ThisBuild / semanticdbVersion := "4.1.9"
ThisBuild / semanticdbIncludeInJar := false

This was added by [@eed3si9n][@eed3si9n] as #4410.

print command

sbt 1.3.0 adds a new print command, similar to show but prints directly to
standard out.

sbt -no-colors --error "print akka-cluster/scalaVersion"
2.12.8

This was contributed by David Knapp ([@Falmarri][@Falmarri]) as #4341

Appending Function1

Function1 can be appended using +=.

Global / onLoad += { s =>
doSomething()
s

}

This was contributed by Dale Wijnand ([@dwijnand][@dwijnand]) as #4521.

JDK 11 support

sbt 1.3.0 is first release of sbt that’s been testing on JDK11 extensively. All
integration tests on Travis CI are on AdoptOpenJDK’s JDK 11, which were
updated by [@eed3si9n][@eed3si9n] as #4389/zinc#639/zinc640.

• Fixes warnings on JDK 9+ by upgrading to protobuf 3.7.0 zinc#644 by
[@smarter][@smarter]

• Fixes spurious rebuilds caused by invalidation of rt.jar on JDK 11 #4679
by [@eatkins][@eatkins]

148

https://github.com/sbt/sbt/pull/4410
https://github.com/sbt/sbt/pull/4341
https://github.com/sbt/sbt/pull/4521
https://github.com/sbt/sbt/pull/4389
https://github.com/sbt/zinc/pull/639
https://github.com/sbt/zinc/pull/640
https://github.com/sbt/zinc/pull/644
https://github.com/sbt/sbt/pull/4679

Other bug fixes and improvements

• Fixes cross building with a single-letter alias #4355 / #1074 by
[@eed3si9n][@eed3si9n]

• Removes old warning about global directory #4356 / #1054 by
[@eed3si9n][@eed3si9n]

• Improves JDK discovery for cross-JDK forking #4313 / #4462 by [@ra-
boof][@raboof]

• Expands ~ in -Dsbt.global.base property to user home. #4367 by [@kai-
chi][@kai-chi]

• Adds def sequential[A](tasks: Seq[Initialize[Task[A]]]):
Initialize[Task[A]]. #4369 by [@3tty0n][@3tty0n]

• Fixes sbt server to send error event on command failure. #4378 by [@an-
dreaTP][@andreaTP]

• Implements cancellation of request by LSP client. #4384 by [@an-
dreaTP][@andreaTP]

• Implements "sbt/completion" command in sbt to server to complete sbt
commands. #4397 by [@andreaTP][@andreaTP]

• Fixes errors order reported by sbt server. #4497 by [@tdroxler][@tdroxler]
• Fixes cached resolution. #4424 by [@eed3si9n][@eed3si9n]
• The sbt task definition linter warns rather than errors by de-

fault. The linter can be disabled entirely by putting import
sbt.dsl.LinterLevel.Ignore in scope. #4485 by [@eatkins][@eatkins]

• Full GC is only automatically triggered when sbt has been idle for at least
a minute and is only run at most once between shell commands. This
improves shell responsiveness. #4544 by [@eatkins][@eatkins]

• Avoids NPE in JDK12. #4549 by [@retronym][@retronym]
• Fixes the eviction warning summary lm#288 by [@bigwheel][@bigwheel]
• Fixes Zinc’s flag to skip the persistence of API info. zinc#399 by [@ro-

manowski][@romanowski]
• Fixes Zinc not detecting synthetic top level member changes.

#4316/zinc#572 by [@jvican][@jvican]
• Zinc to notify callback of generated non-local classes before the compiler’s

middle and backend phases. zinc#582 by [@jvican][@jvican]
• Removes a use of regex in Zinc for performance. zinc#583 by

[@retronym][@retronym]
• Fixes incremental compilation involving default arguments. zinc#591 by

[@jvican][@jvican]
• Adds Analysis callback of Zinc thread-safe. zinc#626 by [@dotta][@dotta]
• Fixes a non-zero exit Javadoc not failing the task. zinc#625 by [@ra-

boof][@raboof]

Participation

First, I’d like to introduce Ethan Atkins, a core community member of sbt
project, and author of Close Watch that uses native code to provide watch

149

https://github.com/sbt/sbt/pull/4355
https://github.com/sbt/sbt/issues/1074
https://github.com/sbt/sbt/pull/4356
https://github.com/sbt/sbt/issues/1054
https://github.com/sbt/sbt/pull/4313
https://github.com/sbt/sbt/pull/4462
https://github.com/sbt/sbt/pull/4367
https://github.com/sbt/sbt/pull/4369
https://github.com/sbt/sbt/pull/4378
https://github.com/sbt/sbt/pull/4384
https://github.com/sbt/sbt/pull/4397
https://github.com/sbt/sbt/pull/4497
https://github.com/sbt/sbt/pull/4424
https://github.com/sbt/sbt/pull/4485
https://github.com/sbt/sbt/pull/4544
https://github.com/sbt/sbt/pull/4549
https://github.com/sbt/librarymanagement/pull/288
https://github.com/sbt/zinc/pull/399
https://github.com/sbt/sbt/issues/4316
https://github.com/sbt/zinc/pull/572
https://github.com/sbt/zinc/pull/582
https://github.com/sbt/zinc/pull/583
https://github.com/sbt/zinc/pull/591
https://github.com/sbt/zinc/pull/626
https://github.com/sbt/zinc/pull/625

service on macOS. Normally I don’t publicize the number of commits, but here’s
the top 10 for sbt 1.3.0:

541 Ethan Atkins
369 Eugene Yokota (eed3si9n)
42 Jorge Vicente Cantero (jvican)
35 Łukasz Wawrzyk
34 Dale Wijnand
24 Andrea Peruffo
16 Kenji Yoshida (xuwei-k)
13 Guillaume Martres
7 Arnout Engelen
7 Jason Zaugg

As a community member, Ethan has contributed various IO related improve-
ments to make sbt more responsive in his own time. sbt 1.3.0 reflects many of
his ideas.

The last feature release of sbt 1 was sbt 1.2.0 in July, 2018. Since then, we’ve re-
leased eight patch releases under sbt 1.2.x for bug fixes, but most of the feature
enhancements were merged to develop branch. Over the course of these months,
45 contributors contributors participated in sbt 1.3.0 and Zinc: Ethan Atkins,
Eugene Yokota (eed3si9n), Jorge Vicente Cantero (jvican), Łukasz Wawrzyk,
Dale Wijnand, Andrea Peruffo, Kenji Yoshida (xuwei-k), Guillaume Martres,
Arnout Engelen, Jason Zaugg, Krzysztof Romanowski, Antonio Cunei, Mirco
Dotta, OlegYch, Alex Dupre, Nepomuk Seiler, 0lejk4, Alexandre Archambault,
Eric Peters, Kazuhiro Sera, Philippus, Som Snytt, Syed Akber Jafri, Thomas
Droxler, Veera Venky, bigwheel, Akhtyam Sakaev, Alexey Vakhrenev, Eugene
Platonov, Helena Edelson, Ignasi Marimon-Clos, Julien Sirocchi, Justin Kaeser,
Kajetan Maliszewski, Leonard Ehrenfried, Mikołaj Jakubowski, Nafer Sanabria,
Stefan Wachter, Yasuhiro Tatsuno, Yusuke Izawa, falmarri, ilya, kai-chi, tan-
ishiking, Ólafur Páll Geirsson. Thank you!

[@eed3si9n]: https://github.com/eed3si9n [@eatkins]: https://github.com/eatkins
[@dwijnand]: https://github.com/dwijnand [@cunei]: https://github.com/cunei
[@Falmarri]: https://github.com/Falmarri [@raboof]: https://github.com/raboof
[@retronym]: https://github.com/retronym [@kai-chi]: https://github.com/kai-
chi [@3tty0n]: https://github.com/3tty0n [@andreaTP]: https://github.com/andreaTP
[@tdroxler]: https://github.com/tdroxler [@leonardehrenfried]: https://github.com/leonardehrenfried
[@alexarchambault]: https://github.com/alexarchambault [@bigwheel]:
https://github.com/bigwheel [@romanowski]: https://github.com/romanowski
[@jvican]: https://github.com/jvican [@dotta]: https://github.com/dotta
[@smarter]: https://github.com/smarter [SemanticDB]: https://scalameta.org/docs/semanticdb/guide.html

150

https://www.lightbend.com/blog/scala-sbt-120-patchnotes

sbt 1.2.x releases

sbt 1.2.1

Forward bincompat breakage

If you are writing a plugin, please use 1.2.1+, and avoid 1.2.0.

We unintentionally broke forward binary compatibility in 1.2.0. If someone
publishes an sbt plugin using sbt 1.2.0, it cannot be used from sbt 1.0.x or
1.1.x. sbt 1.2.1 reverts the change, so the forward compatibility is restored.
Unfortunately, this means we won’t be able to use varargs in inThisBuild(...)
etc again.

Note that we might eventually break forward compatibility, like we did in 0.13.5
for AutoPlugin, but only when the tradeoff is worth it.

The project Foo references an unknown configuration “bar”

Second regression fix is for the wall of warnings you might have seen in 1.2.0
that looks as follows:

[warn] The project ProjectRef(uri("file:/Users/xxx/work/akka/"), "akka-actor-typed") references an unknown configuration "multi-jvm" and was guessed to be "Multi-jvm".
[warn] This configuration should be explicitly added to the project.
[warn] The project ProjectRef(uri("file:/Users/xxx/work/akka/"), "akka-actor-typed-tests") references an unknown configuration "multi-jvm" and was guessed to be "Multi-jvm".
[warn] This configuration should be explicitly added to the project.

The original issue was that unified slash syntax doesn’t pick the configuration
names when the configuration is not part of the subproject. Since this warning
is immaterial, we are removing them in this patch release.

One thing the plugin authors can start doing is declaring the custom configura-
tion as hidden, and adding them into the subprojects as follows:

import sbt._
import sbt.Keys._

object ParadoxPlugin extends AutoPlugin {
val ParadoxTheme = config("paradox-theme").hide
override def projectConfigurations: Seq[Configuration] = Seq(ParadoxTheme)

....
}

We are also looking into improving unified slash syntax parser to make it more
robust.

Other bug fixes

151

• Updates IO.relativize for JDK 9. io#175 by [@eatkins][@eatkins]
• Fixes logic for adding external class file manager. zinc#562 by [@allan-

renucci][@allanrenucci]

Contributors

A huge thank you to everyone who’s helped improve sbt and Zinc 1 by using
them, reporting bugs, improving our documentation, porting builds, porting
plugins, and submitting and reviewing pull requests.

sbt 1.2.1 was brought to you by 4 contributors, according to git shortlog
-sn --no-merges v1.2.1...v1.2.0 on sbt, zinc, librarymanagement, util, io,
launcher-package, and website: Eugene Yokota, Aaron S. Hawley, Ethan Atkins,
and Allan Renucci. Thanks! Also special thanks to Ches Martin and Yoshida-
san for reporting these issues.

[@eed3si9n]: https://github.com/eed3si9n [@dwijnand]: https://github.com/dwijnand
[@cunei]: https://github.com/cunei [@eatkins]: https://github.com/eatkins
[@allanrenucci]: https://github.com/allanrenucci

sbt 1.2.0

Warning: We found forward compatibility breakage in 1.2.0, so we recommend
everyone to upgrade to sbt 1.2.1 or later.

The headline features of sbt 1.2 are cross JDK forking, composite project, and
experimental thin clients. But, there are lots of other bug fixes and enhance-
ments that we’ve been accumulating for six months since sbt 1.1.

SbtPlugin for plugin development

SbtPlugin is a plugin to declare a project for sbt plugins. This automatically
brings in scripted tests, and sets sbtPlugin := true.

lazy val root = (project in file("."))
.enablePlugins(SbtPlugin)

Compatibility note: ScriptedPlugin is no longer a triggered plugin.

#3875 by [@eed3si9n][@eed3si9n]

Cross JDK forking

For forked run and test, java++ can now switch Java Home.

152

https://github.com/sbt/io/pull/175
https://github.com/sbt/zinc/pull/562
https://github.com/sbt/sbt/releases/tag/v1.2.1
https://github.com/sbt/sbt/pull/3875

sbt:helloworld> run
[info] Running (fork) Hello
[info] 1.8.0_171
sbt:helloworld> java++ 10!
[info] Reapplying settings...
sbt:helloworld> run
[info] Running (fork) Hello
[info] 10.0.1

sbt will try to detect Java homes into discoveredJavaHomes setting, supporting
shyiko/jabba. This can be augmented by Global / javaHomes:

Global / javaHomes += "6" -> file("/something/java-6")

This feature is intended for testing your library in an older JVM to check com-
patibility.

#4139 by [@2m][@2m], [@cunei][@cunei], and [@eed3si9n][@eed3si9n]

scalaVersion-filtered aggregation

In 2015 James Roper contributed scalaVersion-filtered aggregation to sbt-doge.
This feature is brought back into sbt 1.2 by Rui Gonçalves ([@ruippeixo-
tog][@ruippeixotog]) in #3698/#3995!

This extends switch command ++ to take an optional <command>:

> ++2.12.7 compile

This will aggregate only the subproject where ++2.12.7 is valid, which is useful
when you have a build where some subprojects are 2.11 only etc.

Composite project

sbt 1.2.0 introduces “composite project” trait, which allows plugin authors to
generate subprojects, for example for cross building.

trait CompositeProject {
def componentProjects: Seq[Project]

}

This was contributed by [@BennyHill][@BennyHill] as #4056.

Project matrix

Experimental. As a reference implementation of the CompositeProject I
implemented a new DSL called projectMatrix introduced by sbt-projectmatrix
plugin.

153

https://github.com/shyiko/jabba
https://github.com/sbt/sbt/pull/4139
https://github.com/sbt/sbt-doge/pull/4
https://github.com/sbt/sbt/issues/3698
https://github.com/sbt/sbt/pull/3995
https://github.com/sbt/sbt/pull/4056
https://github.com/sbt/sbt-projectmatrix

lazy val core = (projectMatrix in file("core"))
.scalaVersions("2.12.7", "2.11.12")
.settings(
name := "core"

)
.jvmPlatform()

lazy val app = (projectMatrix in file("app"))
.dependsOn(core)
.scalaVersions("2.12.7")
.settings(
name := "app"

)
.jvmPlatform()

The aim of the plugin is to support a generic notion of cross building (Scala
version, platform, etc) expressed using subprojects. In the above projectMarix
will produce three subprojects: coreJVM2_12, coreJVM2_11, and appJVM2_12.

Semantic Version selector API

sbt 1.2.0 introduces Semantic Version selector on VersionNumber() datatype
supporting basic match, comparison (<=, <, >=, >), combination (>1.0.0
<2.0.0, ||), ranges (A.B.C - D.E.F), and wildcard (2.12.x).

scala> import sbt.librarymanagement.{ VersionNumber, SemanticSelector }
import sbt.librarymanagement.{VersionNumber, SemanticSelector}

scala> VersionNumber("2.12.5").matchesSemVer(SemanticSelector(">=2.12"))
res1: Boolean = true

scala> VersionNumber("2.12.5").matchesSemVer(SemanticSelector("<2.12"))
res2: Boolean = false

scala> VersionNumber("2.13.0-M4").matchesSemVer(SemanticSelector("2.13"))
res3: Boolean = false

scala> VersionNumber("2.12.5").matchesSemVer(SemanticSelector("2.12.1 - 2.12.7"))
res4: Boolean = true

scala> VersionNumber("2.12.5").matchesSemVer(SemanticSelector("2.12.x"))
res5: Boolean = true

scala> VersionNumber("2.12.5").matchesSemVer(SemanticSelector("2.11.x || 2.12.x"))
res6: Boolean = true

Note: This has no effect on library management at the moment.

154

This was contributed by Rikito Taniguchi ([@tanishiking][@tanishiking]) as
lm#239.

addPluginSbtFile command

There’s been a request from IntelliJ to safely inject a plugin to a build. sbt 1.2.0
adds -addPluginSbtFile command to do so.

$ cat /tmp/extra.sbt
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.14.7")

$ sbt -addPluginSbtFile=/tmp/extra.sbt
...
sbt:helloworld> plugins
In file:/xxxx/hellotest/
...
sbtassembly.AssemblyPlugin: enabled in root

Implmented by [@eed3si9n][@eed3si9n] as #4211.

Extensible sbt server

Experimental. sbt server can now be extended via the plugin.

Global / serverHandlers += ServerHandler({ callback =>
import callback._
import sjsonnew.BasicJsonProtocol._
import sbt.internal.protocol.JsonRpcRequestMessage
ServerIntent(
{

case r: JsonRpcRequestMessage if r.method == "lunar/helo" =>
jsonRpcNotify("lunar/oleh", "")
()

},
PartialFunction.empty

)

This feature is still experimental and the API may change in the future.

#3975 by [@eed3si9n][@eed3si9n]

Thin client(s)

Experimental. sbt 1.2.0 adds a new mode called -client. When sbt is started
with -client command, it no longer to loads the build, and instead tries to connect
to an instance of sbt server over JSON-RPC. When the server is not running
(portfile is not found), it will fork a new instance of sbt entirely in a new JVM.

155

https://github.com/sbt/librarymanagement/pull/239
https://github.com/sbt/sbt/pull/4211
https://github.com/sbt/sbt/pull/3975

This lets you invoke sbt from the terminal shell or from an editor.

$ time sbt -client clean
[info] entering *experimental* thin client - BEEP WHIRR
[info] server was not detected. starting an instance
[info] waiting for the server...
[info] waiting for the server...
[info] waiting for the server...
[info] waiting for the server...
[info] server found
> clean
[success] completed
sbt -client clean 9.23s user 2.33s system 22% cpu 50.558 total

server stays
$ ps | rg java
21860 ttys015 1:22.43 java -Xms2048M -Xmx2048M -Xss2M -jar /usr/local/Cellar/sbt/1.1.6/libexec/bin/sbt-launch.jar
22014 ttys015 0:00.00 rg java

$ time sbt -client clean
[info] entering *experimental* thin client - BEEP WHIRR
> clean
[info] Updating ...
[info] Done updating.
[success] completed
sbt -client clean 3.39s user 1.75s system 104% cpu 4.898 total

To end the server, call sbt -client shutdown. #4227 by [@eed3si9n][@eed3si9n]

In addition, there are also an alternative thin clients cb372/sbt-client and dwij-
nand/sbtl implemented using Rust.

Changes with compatibility implication

• Removes deprecated commands -, --, and ---. Use onFailure,
sbtClearOnFailure, and resumeFromFailure instead. #4124

• Makes ++ fail when it doesn’t affect any subprojects #4269 by
[@eed3si9n][@eed3si9n]

Other bug fixes and improvements

• Fixes output caching bug. util#169 by [@bpholt][@bpholt]

• Fixes “destination file exists” error message. lm#255 by [@eed3si9n][@eed3si9n]

• Reintroduces Command.process(String, State): State. #4023 by
[@dwijnand][@dwijnand]

156

https://github.com/sbt/sbt/pull/4227
https://github.com/cb372/sbt-client
https://github.com/dwijnand/sbtl
https://github.com/dwijnand/sbtl
https://github.com/sbt/sbt/pull/4124
https://github.com/sbt/sbt/pull/4269
https://github.com/sbt/util/pull/169
https://github.com/sbt/librarymanagement/pull/255
https://github.com/sbt/sbt/pull/4023

• Fixes active.json not getting removed on JVM shutdown. #4194 by
[@veera83372][@veera83372]

• Fixes file permission error (“CreateFile() failed”) while reading the
timestamp on Windows. io#134 by [@cunei][@cunei]

• Fixes the linter that detects missing .value. #4090 by [@eed3si9n][@eed3si9n]

• Fixes StringIndexOutOfBoundsException in removeEscapeSequences.
util#139 by [@dwijnand][@dwijnand]

• Fixes OkHttp’s JavaNetAuthenticator with a null check. lm#177 by
[@eed3si9n][@eed3si9n]

• Fixes Sonatype timeout issue by extending the default timeout to 1h.
lm#246 by [@peterneyens][@peterneyens]

• Fixes thread thrashing error during the parallel download. lm249 by [@Ol-
egYch][@OlegYch]

• Fixes JavaDoc warnings logged as errors. zinc#506 by [@kay-
gorodov][@kaygorodov]

• Fixes class dependency not picking up classOf[A]. zinc#510 by [@natan-
sil][@natansil]

• Fixes class dependency including non-existing objects. zinc422 by [@ro-
manowski][@romanowski]

• Fixes link to the documentation of deprecated 0.10/0.12 DSL syntax.
#3901 by [@colindean]

• Fixes the documentation of skip key. #3926 by [@dkim][@dkim]

• Fixes race condition in non-forked parallel tests. #3985 by [@retronym][@retronym]

• Fixes Ctrl-C handing in forked tests when Global / cancelable is set
to true. #4226 by [@driquelme][@driquelme]

• Fixes the stacktrace of run. #4232 by [@eed3si9n][@eed3si9n]

• Bumps the version of Giter8 used by sbt new to 0.11.0, fixing various
issues #4263 by [@eed3si9n][@eed3si9n]

• Improves Javac error parsing. zinc#557 by [@eed3si9n][@eed3si9n]

• Displays only the eviction warning summary by default, and make it config-
urable using ThisBuild / evictionWarningOptions. lm211 and #3947
by [@exoego][@exoego]

• Allow varargs in inThisBuild(...), inConfig(C)(...), inTask(t)(...),
inScope(scope)(...). #4106 by [@dwijnand][@dwijnand]

• Adds fgRun and fgRunMain tasks that behaves like sbt 0.13’s run. #4216
by [@agaro1121][@agaro1121]

157

https://github.com/sbt/sbt/pull/4194
https://github.com/sbt/io/pull/134
https://github.com/sbt/sbt/pull/4090
https://github.com/sbt/util/pull/139
https://github.com/sbt/librarymanagement/pull/177
https://github.com/sbt/librarymanagement/pull/246
https://github.com/sbt/librarymanagement/pull/249
https://github.com/sbt/zinc/pull/506
https://github.com/sbt/zinc/pull/510
https://github.com/sbt/zinc/pull/422
https://github.com/sbt/sbt/pull/3901
https://github.com/sbt/sbt/pull/3926
https://github.com/sbt/sbt/pull/3985
https://github.com/sbt/sbt/pull/4226
https://github.com/sbt/sbt/pull/4232
https://github.com/sbt/sbt/pull/4263
https://github.com/sbt/zinc/pull/557
https://github.com/sbt/librarymanagement/pull/211
https://github.com/sbt/sbt/pull/3947
https://github.com/sbt/sbt/pull/4106
https://github.com/sbt/sbt/pull/4216

• Supports test.script and pending.script as the scripted file name.
#4220 by [@regadas][@regadas]

• Supports aliases in inspect command. #4221 by [@gpoirier][@gpoirier]

• Adds the current project’s id to ~’s watching message. #2038 / #3813 by
[@dwijnand][@dwijnand]

• Changes PathFinder#get to get(). io#104 by [@dwijnand][@dwijnand]

• Improves the error message when access is denied. lm#203 by [@stephen-
nancekivell][@stephennancekivell]

• Improve the warning message “Choosing local” to something more action-
able. lm#248 by [@khvatov][@khvatov]

• Adds an option to ignore scalac options change. zinc#548 by
[@lukaszwawrzyk][@lukaszwawrzyk]

• Enable parallel execution of scripted in the plugin. #3891 by [@jvi-
can][@jvican]

• Adds factory methods for Configuration axis scope filters inConfigurationsByKeys
and inConfigurationsByRefs. #3994

• Adds lastGrep, loadFailed, etc commands to replace the kebab-
cased commands. #4080 by [@naferx][@naferx], #4159 by [@Asam-
sig][@Asamsig], and #4169 by [@tiqwab][@tiqwab]

• Adds timestamp field to JUnitXML report. 4154 by [@timcharper][@timcharper]

• “Loading settings” log messages now show subproject name. #4164 by
[@alodavi][@alodavi]

• about command sorts and indents plugins list. #4187 by [@mcan-
las][@mcanlas]

• -Dsbt.offline sets offline setting. #4198 by [@eed3si9n][@eed3si9n]

• Selects most recent JDK during cross JDK forking (see below for details)
#4245 by [@raboof][@raboof]

Internal

• Removes some compiler warnings. #3087 by [@dwijnand][@dwijnand]
• Lots of other refactorings by [@dwijnand][@dwijnand]
• Removes some compiler warnings in Zinc. zinc#493 by [@ex-

oego][@exoego]
• Perf: Prevents creation of useless URI copies in IO.directoryURI. io#132

by [@jrudolph][@jrudolph]
• Perf: Avoids reflect universe initialization in initStringCodecs. util#153

by [@jrudolph][@jrudolph]

158

https://github.com/sbt/sbt/pull/4220
https://github.com/sbt/sbt/pull/4221
https://github.com/sbt/sbt/issues/2038
https://github.com/sbt/sbt/pull/3813
https://github.com/sbt/io/pull/104
https://github.com/sbt/librarymanagement/pull/203
https://github.com/sbt/librarymanagement/pull/248
https://github.com/sbt/zinc/pull/548
https://github.com/sbt/sbt/pull/3891
https://github.com/sbt/sbt/pull/3994
https://github.com/sbt/sbt/pull/4080
https://github.com/sbt/sbt/pull/4159
https://github.com/sbt/sbt/pull/4169
https://github.com/sbt/sbt/pull/4154
https://github.com/sbt/sbt/pull/4164
https://github.com/sbt/sbt/pull/4187
https://github.com/sbt/sbt/pull/4198
https://github.com/sbt/sbt/pull/4245
https://github.com/sbt/sbt/pull/3807
https://github.com/sbt/zinc/pull/493
https://github.com/sbt/io/pull/132
https://github.com/sbt/util/pull/153

• Perf: Speeds up Parsers.validID. #3952 by [@jrudolph][@jrudolph]
• Perf: Optimizes scope delegation by hand rolling for comprehension.

#4003 by [@jrudolph][@jrudolph] and [@eed3si9n][@eed3si9n]
• Use val instead of var in an internal code. #4253 by [@xuwei-k][@xuwei-

k]

Contributors

Thanks again to everyone who’s helped improve sbt and Zinc 1.

sbt 1.2.0 was brought to you by 60 contributors. Dale Wijnand, Eugene Yokota,
Kenji Yoshida (xuwei-k), Yasuhiro Tatsuno (exoego), Łukasz Wawrzyk, Jorge
Vicente Cantero (jvican), Alistair Johnson, Antonio Cunei, Jason Zaugg, Rik-
ito Taniguchi (tanishiking), Seiya Mizuno, Tim Harper, Aloisia Davì (alodavi),
Arnout Engelen, Ethan Atkins, Johannes Rudolph, Krzysztof Romanowski, Al-
lan Renucci, Brian P. Holt, Filipe Regadas, Hiroshi Ito, Martijn Hoekstra, Ol-
egYch, Seth Tisue, natans, Aaron S. Hawley, Alex Khvatov, Alexander Samsig,
Andreas Jim-Hartmann, Andrei Pozolotin, Andrey Kaygorodov, Anthony Garo,
Christopher Hunt, Colin Dean, Daniel Riquelme, Deokhwan Kim, Gerard Maas,
Guillaume Poirier, Heikki Vesalainen, Jason Pickens, Jonas Fonseca, Julien Jer-
phanion, Justin Pihony, Kazufumi Nishida, Kyle Goodale, Maksym Fedorov,
Mark Canlas, Martynas Mickevičius, Michael Pollmeier, Mike Skells, Nafer
Sanabria, Naohisa Murakami (tiqwab), PanAeon, Peter Neyens, Rui Gonçalves,
Sean Sullivan, Stephen Nancekivell, Veera Venky, blakkan, ortigali. Thank you!

[@eed3si9n]: https://github.com/eed3si9n [@dwijnand]: https://github.com/dwijnand
[@cunei]: https://github.com/cunei [@jvican]: https://github.com/jvican
[@Duhemm]: https://github.com/Duhemm [@jrudolph]: https://github.com/jrudolph
[@2m]: https://github.com/2m [@retronym]: https://github.com/retronym
[@xuwei-k]: https://github.com/xuwei-k [@BennyHill]: https://github.com/BennyHill
[@stephennancekivell]: https://github.com/stephennancekivell [@exoego]:
https://github.com/exoego [@tanishiking]: https://github.com/tanishiking
[@peterneyens]: https://github.com/peterneyens [@khvatov]: https://github.com/khvatov
[@OlegYch]: https://github.com/OlegYch [@kaygorodov]: https://github.com/kaygorodov
[@natansil]: https://github.com/natansil [@romanowski]: https://github.com/romanowski
[@lukaszwawrzyk]: https://github.com/lukaszwawrzyk [@colindean]: https://github.com/colindean
[@dkim]: https://github.com/dkim [@fmlrt]: https://github.com/fmlrt
[@ruippeixotog]: https://github.com/ruippeixotog [@veera83372]: https://github.com/veera8337
[@naferx]: https://github.com/naferx [@timcharper]: https://github.com/timcharper
[@Asamsig]: https://github.com/Asamsig [@tiqwab]: https://github.com/tiqwab
[@alodavi]: https://github.com/alodavi [@mcanlas]: https://github.com/mcanlas
[@agaro1121]: https://github.com/agaro1121 [@regadas]: https://github.com/regadas
[@gpoirier]: https://github.com/gpoirier [@driquelme]: https://github.com/driquelme
[@raboof]: https://github.com/raboof [@bpholt]: https://github.com/bpholt

159

https://github.com/sbt/sbt/pull/3952
https://github.com/sbt/sbt/pull/4003
https://github.com/sbt/sbt/pull/4253

sbt 1.1.x releases

sbt 1.1.6

Bug fixes

• Fixes file watching for Unix/Linux. io#150 by [@eatkins][@eatkins]
• Fixes packageBin not creating file when deleted. sbt/sbt#4161 by

[@dadarakt][]
• Fixes help -v rendering of multi-line descriptions. #4160 by [@nin-

jalama][@ninjalama]
• Fixes –error etc to set log level. #4162 by [@holdenk][@holdenk]
• Handles managedSources writing into unmanaged source directories.

#4099 by [@eatkins][@eatkins]
• Fixes handling of overflows in EventMonitor. io#155 by [@eatkins][@eatkins]
• Recovers “Resolving…” log under UpdateLogging.Full. lm#240 by

[@hodga][@hodga]
• Fixes -Dconfig.resource=/path/to/configFile conflicting with Giga-

horse. lm#241 by [@tanishiking][@tanishiking]
• Removes use of deprecated ModifiedTime methods. io#154 by [@dwest-

heide][@dwestheide]
• Fixes tests on Windows. io#153 by [@OlegYch][@OlegYch]

Contributors

A huge thank you to everyone who’s helped improve sbt and Zinc 1 by using
them, reporting bugs, improving our documentation, porting builds, porting
plugins, and submitting and reviewing pull requests.

sbt 1.1.6 was brought to you by 15 contributors, according to git shortlog
-sn --no-merges v1.1.5...v1.1.6 on sbt, zinc, librarymanagement, util, io,
launcher-package, and website: Ethan Atkins, Eugene Yokota, Dale Wijnand,
Aaron S. Hawley, OlegYch, Richard Summerhayes, Jannis (dadarakt), Rik-
ito Taniguchi (tanishiking), Øyvind Høisæther, Daniel Westheide, Harrison
Houghton, Holden Karau, Håkon Wold, Jason Zaugg, and tekay.

[@eed3si9n]: https://github.com/eed3si9n [@dwijnand]: https://github.com/dwijnand
[@cunei]: https://github.com/cunei [@jvican]: https://github.com/jvican
[@Duhemm]: https://github.com/Duhemm [@xuwei-k]: https://github.com/xuwei-
k [@retronym]: https://github.com/retronym [@eatkins]: https://github.com/eatkins
[@dadarakt]: https://github.com/dadarakt [@ninjalama]: https://github.com/ninjalama
[@holdenk]: https://github.com/holdenk [@hodga]: https://github.com/hodga
[@tanishiking]: https://github.com/tanishiking [@dwestheide]: https://github.com/dwestheide
[@OlegYch]: https://github.com/OlegYch

160

https://github.com/sbt/io/pull/150
https://github.com/sbt/sbt/pull/4160
https://github.com/sbt/sbt/pull/4162
https://github.com/sbt/sbt/pull/4099
https://github.com/sbt/io/pull/155
https://github.com/sbt/librarymanagement/pull/240
https://github.com/sbt/librarymanagement/pull/241
https://github.com/sbt/io/pull/154
https://github.com/sbt/io/pull/153

sbt 1.1.5

Bug fixes

• Fixes the latency between file modification events and triggered execution.
[io#142][io142] and [sbt#4096][4096] by [@eatkins][@eatkins]

• Fixes NPE that could arise from WatchEvent [io#140][io140] by
[@oneill][@oneill]

• Fixes deleted files not triggering ~. [sbt#4098][4098] by [@eatkins][@eatkins]
• Fixes MacOSXWatchService to meet the WatchService API. [io#142][io142]

by [@eatkins][@eatkins]
• Avoids printing RejectedExectionExeption stack trace after cancellation.

[sbt#4058][4058] by [@retronym][@retronym]
• Fixes Java version checking on Windows. [lp#227][lp227] / [lp#228][lp228]

by [@jessicah][@jessicah] and [@spangaer][@spangaer]
• Fixes unexpected responses from sbt server. [sbt#4093][4093] by

[@laughedelic][@laughedelic]
• Re-fix console and JLine bug. [sbt#4123][4123] by [@eed3si9n][@eed3si9n]
• Fixes grammar for contributors guide. [sbt#4133][4133] by [@som-

snytt][@som-snytt]

Improvements

• Performance optimization for Zinc. [zinc#492][zinc492] by [@retronym][@retronym]
• Adds support for detecting Dotty compiler plugins. [zinc#529][zinc529]

by [@liufengyun][@liufengyun]
• Bumps Scala to 2.12.6. [sbt#4129][4129] by [@SethTisue][@SethTisue]
• Updates to JLine 2.14.6. [sbt#4087][4087] by [@hvesalai][@hvesalai]
• Start sbt in VS Code terminal window. See below.

Watcher improvements

Continuing from sbt 1.1.4, Ethan Atkins contributed fixes and improvements
for triggered execution ~ watcher. sbt 1.1.5 should fix the latency between file
modification events and the command execution.

VS Code extension update

We released a new sbt VS Code extension that starts sbt session in the
embedded terminal window. This was contributed by Robert Walker
([@WalkingOlof][@WalkingOlof]) in [sbt#4130][4130].

sbt by example

We added [sbt by example][by-example] to the sbt documentation. This
is a single-page guide that takes you from zero to building an app on

161

Docker, inspired by, and largely based on William Narmontas ([@ScalaW-
illiam][@ScalaWilliam])’s Essential sbt.

Contributors

A huge thank you to everyone who’s helped improve sbt and Zinc 1 by using
them, reporting bugs, improving our documentation, porting builds, porting
plugins, and submitting and reviewing pull requests.

sbt 1.1.5 was brought to you by 21 contributors, according to git shortlog
-sn --no-merges v1.1.4...v1.1.5 on sbt, zinc, librarymanagement, util, io,
launcher-package, and website: Eugene Yokota, Ethan Atkins, Jason Zaugg, Liu
Fengyun, Antonio Cunei, Dale Wijnand, Roberto Bonvallet, Alexey Alekhin,
Daniel Parks, Heikki Vesalainen, Jean-Luc Deprez, Jessica Hamilton, Kenji
Yoshida (xuwei-k), Nikita Gazarov, OlegYch, Richard Summerhayes, Robert
Walker, Seth Tisue, Som Snytt, oneill, and �� (Yang Bo)

[@eed3si9n]: https://github.com/eed3si9n [@dwijnand]: https://github.com/dwijnand
[@cunei]: https://github.com/cunei [@jvican]: https://github.com/jvican
[@Duhemm]: https://github.com/Duhemm [@xuwei-k]: https://github.com/xuwei-
k [@retronym]: https://github.com/retronym [@eatkins]: https://github.com/eatkins
[@oneill]: https://github.com/oneill [@jessicah]: https://github.com/jessicah
[@spangaer]: https://github.com/spangaer [@laughedelic]: https://github.com/laughedelic
[@som-snytt]: https://github.com/som-snytt [@liufengyun]: https://github.com/liufengyun
[@SethTisue]: https://github.com/SethTisue [@hvesalai]: https://github.com/hvesalai
[@olofwalker]: https://github.com/olofwalker [@ScalaWilliam]: https://twitter.com/ScalaWilliam
[@WalkingOlof]: https://twitter.com/WalkingOlof [io140]: https://github.com/sbt/io/pull/140
[io142]: https://github.com/sbt/io/pull/142 [4058]: https://github.com/sbt/sbt/pull/4058
[4087]: https://github.com/sbt/sbt/pull/4087 [4093]: https://github.com/sbt/sbt/pull/4093
[4096]: https://github.com/sbt/sbt/pull/4096 [4098]: https://github.com/sbt/sbt/pull/4098
[4123]: https://github.com/sbt/sbt/pull/4123 [4129]: https://github.com/sbt/sbt/pull/4129
[4130]: https://github.com/sbt/sbt/pull/4130 [4133]: https://github.com/sbt/sbt/pull/4133
[lp227]: https://github.com/sbt/sbt-launcher-package/pull/227 [lp228]:
https://github.com/sbt/sbt-launcher-package/pull/228 [zinc492]: https://github.com/sbt/zinc/pull/492
[zinc529]: https://github.com/sbt/zinc/pull/529 [by-example]: https://www.scala-
sbt.org/1.x/docs/sbt-by-example.html essential-sbt: https://www.scalawilliam.com/essential-
sbt/

sbt 1.1.4

Bug fixes

• Fixes triggered execution on macOS. See below for details.
• Fixes running console twice messing up JLine. [#3482][3482]/[#4054][4054]

by [@eed3si9n][@eed3si9n]

162

https://www.scalawilliam.com/essential-sbt/
https://www.scalawilliam.com/essential-sbt/

• Fixes updateSbtClassifiers. [#4070][4070]/[#3432][3432] by [@steiny-
bot][@steinybot]

• Fixes Java error message handling. [zinc#524][zinc524]/[zinc#525][zinc525]
by [@retronym][@retronym] and [@dwijnand][@dwijnand]

• Fixes the error message linking to the migration guide. [#4063][4063] by
[@dwijnand][@dwijnand]

• Fixes batch script so sbt runs on JDK 10 on Windows. [lp#225][lp225] by
[@eed3si9n][@eed3si9n]

• Fixes bash script so sbt -debug changes log level to debug. [lp#226][lp226]
by [@eed3si9n][@eed3si9n]

Improvements

• Exposes sbt.io.JavaMilli. [io#139][io139] by [@dwijnand][@dwijnand]
• Adds -Dsbt.launcher.cp.prepend JVM flag that is used for monkey

patching sbt. [launcher#50][launcher50] by [@fommil][@fommil]

Triggered execution on macOS

sbt has long had issues with triggered execution on macOS. Ethan Atkins has
contributed a fix for this problem by merging MacOSXWatchService from his
[CloseWatch][closewatch]. Thanks, Ethan!

Credit also goes to Greg Methvin and Takari’s directory-watcher. [#3860][3860]/[#4071][4071]/[io#138][io138]
by [@eatkins][@eatkins]

Running sbt with standby

One of the tricky things you come across while profiling is figuring out the
process ID, while wanting to profile the beginning of the application.

For this purpose, we’ve added sbt.launcher.standby JVM flag. Starting sbt
1.1.4, you can run:

$ sbt -J-Dsbt.launcher.standby=20s exit

This will count down for 20s before doing anything else. [launcher#51][launcher51]
by [@eed3si9n][@eed3si9n]

Loading performance improvement

Using Flame graph (if you haven’t yet, check out Profiling JVM applications
post), Jason Zaugg identified hashing code of the build file to be one of the
hot paths during sbt startup. Flame graph supports Ctrl+F to filter on
method names; and when I ran it, it showed 4.5% of the time was spent in
Eval#evalCommon method.

163

Instead of creating an intermediate Array[Byte] and passing it to
MessageDigest at the end, Jason suggested that we pass the arrays to
MessageDigest#update in a more procedural style. After confirming that it
worked, we’ve next identified file timestamp code to be the next bottle neck
using Flame graph, so that was switched to using NIO. After both changes,
Eval#evalCommon’s footprint reduced to 2.3%.

This means that your build loads slightly faster on sbt 1.1.4 (about 0.54s faster
on akka/akka, for example). [#4067][4067] by [@eed3si9n][@eed3si9n]

Contributors

A huge thank you to everyone who’s helped improve sbt and Zinc 1 by using
them, reporting bugs, improving our documentation, porting builds, porting
plugins, and submitting and reviewing pull requests.

sbt 1.1.4 was brought to you by 11 contributors, according to git shortlog
-sn --no-merges v1.1.2...v1.1.4 on sbt, zinc, librarymanagement, util, io,
launcher-package, and website: Eugene Yokota, Dale Wijnand, �� (Yang Bo),
Ethan Atkins, Sam Halliday, Aaron S. Hawley, Gabriele Petronella, Jason
Steenstra-Pickens, Jason Zaugg, Julien Jean Paul Sirocchi, and aumann.

[@eed3si9n]: https://github.com/eed3si9n [@dwijnand]: https://github.com/dwijnand
[@cunei]: https://github.com/cunei [@jvican]: https://github.com/jvican
[@Duhemm]: https://github.com/Duhemm [@xuwei-k]: https://github.com/xuwei-
k [@retronym]: https://github.com/retronym [@eatkins]: https://github.com/eatkins
[@steinybot]: https://github.com/steinybot [@fommil]: https://github.com/fommil
[closewatch]: https://github.com/swoval/swoval/tree/master/plugin [io138]:
https://github.com/sbt/io/pull/138 [io139]: https://github.com/sbt/io/pull/139
[3860]: https://github.com/sbt/sbt/issues/3860 [4071]: https://github.com/sbt/sbt/pull/4071
[zinc524]: https://github.com/sbt/zinc/pull/524 [zinc525]: https://github.com/sbt/zinc/pull/525
[4054]: https://github.com/sbt/sbt/pull/4054 [3482]: https://github.com/sbt/sbt/issues/3482
[4063]: https://github.com/sbt/sbt/pull/4063 [4067]: https://github.com/sbt/sbt/pull/4067
[4070]: https://github.com/sbt/sbt/pull/4070 [3432]: https://github.com/sbt/sbt/issues/3432
[launcher50]: https://github.com/sbt/launcher/pull/50 [launcher51]: https://github.com/sbt/launcher/pull/51
[lp225]: https://github.com/sbt/sbt-launcher-package/pull/225 [lp226]:
https://github.com/sbt/sbt-launcher-package/pull/226

sbt 1.1.2

Bug fixes

• Fixes triggered execution’s resource leak by caching the watch service.
[#3999][3999] by [@eatkins][@eatkins]

164

• Fixes classloader inheriting the dependencies of Scala compiler during run
[zinc#505][zinc505] by [@eed3si9n][@eed3si9n]

• Fixes forked test concurrency issue. [#4030][4030] by [@eatkins][@eatkins]
• Fixes new command leaving behind target directory [#4033][4033] by

[@eed3si9n][@eed3si9n]
• Fixes handling on null Content-Type. [lm214][lm214] by [@staale][@staale]
• Fixes null handling of managedChecksums in ivySettings file.

[lm#218][lm218] by [@IanGabes][@IanGabes]
• Adds sbt.boot.lock as a JVM property to opt-out of locking.

[#3927][3927] by [@dwijnand][@dwijnand]
• Provides SBT_GLOBAL_SERVER_DIR env var as a workaround to long socket

file path on UNIX. [#3932][3932] by [@dwijnand][@dwijnand]
• Fixes forked runs reporting noisy “Stream closed” exception. [#3970][3970]

by [@retronym][@retronym]
• Fixes test compilation not getting included in VS Code save trigger.

[#4022][4022] by [@tmiyamon][@tmiyamon]
• Fixes sbt server responding with string id when number id passed.

[#4025][4025] by [@tiqwab][@tiqwab]
• Fixes getDecoder in Analysis format [zinc#502][zinc502] by [@jilen][@jilen]
• Fixes equal / hashCode inconsistencies around Array. [zinc#513][zinc513]

by [@eed3si9n][@eed3si9n]
• Whitelists java9-rt-ext-output in rt export process [lp#211][lp211] by

[@eatkins][@eatkins]
• Fixes JDK version detection for Java 10 friendliness. [lp#219][lp219] by

[@eed3si9n][@eed3si9n] and [@2m][@2m]
• Fixes quoting in Windows bat file. [lp#220][lp220] by [@ForN-

eVeR][@ForNeVeR]
• Fixes -error not suppressing startup logs. [#4036][4036] by

[@eed3si9n][@eed3si9n]

Improvements

• Performance optimization around logging. [util#152][util152] by
[@retronym][@retronym]

• Performance fix by caching the hashCode of Configuration. [lm#213][lm213]
by [@retronym][@retronym]

• Returns error code -33000L on sbt server when a command fails.
[#3991][3991] by [@dwijnand][@dwijnand]

• Allows wildcards in organization and artifact. [#215][lm215] by
[@dhs3000][@dhs3000]

• Updates to latest Jsch to support stronger key exchange algorithms.
[lm#217][lm217] by [@ryandbair][@ryandbair]

• Fixes preloading of compiler bridge. [lp#222][lp222] by [@analyti-
cally][@analytically]

165

Internal

• Updates [contribution guide][CONTRIBUTING]. [#3960][3960]/[#4019][4019]
by [@eed3si9n][@eed3si9n] and [@itohiro73][@itohiro73]

• Deletes buildinfo.BuildInfo from sbt main that was intended for test-
ing. [3967][3967] by [@dwijnand][@dwijnand] and [@xuwei-k][@xuwei-k]

• Various improvements around Zinc benchmark by [@retronym][@retronym]

Contributors

sbt 1.1.2 was brought to you by 23 contributors, according to git shortlog
-sn --no-merges v1.1.1...v1.1.2 on sbt, zinc, librarymanagement, util, io,
launcher-package, and website: Dale Wijnand, Eugene Yokota, Jason Zaugg,
Kenji Yoshida (xuwei-k), Ethan Atkins, Martijn Hoekstra, Martynas Micke-
vičius, Dennis Hörsch, Hosam Aly, Antonio Cunei, Friedrich von Never, Hiroshi
Ito, Ian Gabes, Jilen Zhang, Mathias Bogaert, Naohisa Murakami (tiqwab),
Philippus Baalman, Ryan Bair, Seth Tisue, Ståle Undheim, Takuya Miyamoto
(tmiyamon), Yasuhiro Tatsuno. Thank you!

[@eed3si9n]: https://github.com/eed3si9n [@dwijnand]: https://github.com/dwijnand
[@cunei]: https://github.com/cunei [@jvican]: https://github.com/jvican
[@Duhemm]: https://github.com/Duhemm [@xuwei-k]: https://github.com/xuwei-
k [@retronym]: https://github.com/retronym [@eatkins]: https://github.com/eatkins
[@itohiro73]: https://github.com/itohiro73 [@tmiyamon]: https://github.com/tmiyamon
[@tiqwab]: https://github.com/tiqwab [@staale]: https://github.com/staale
[@ryandbair]: https://github.com/ryandbair [@dhs3000]: https://github.com/dhs3000
[@IanGabes]: https://github.com/IanGabes [@jilen]: https://github.com/jilen
[@2m]: https://github.com/2m [@ForNeVeR]: https://github.com/ForNeVeR
[@analytically]: https://github.com/analytically [3927]: https://github.com/sbt/sbt/pull/3927
[3932]: https://github.com/sbt/sbt/pull/3932 [3960]: https://github.com/sbt/sbt/pull/3960
[3967]: https://github.com/sbt/sbt/pull/3967 [3970]: https://github.com/sbt/sbt/pull/3970
[3999]: https://github.com/sbt/sbt/pull/3999 [3991]: https://github.com/sbt/sbt/pull/3991
[4019]: https://github.com/sbt/sbt/pull/4019 [4022]: https://github.com/sbt/sbt/pull/4022
[4025]: https://github.com/sbt/sbt/pull/4025 [4030]: https://github.com/sbt/sbt/pull/4030
[4033]: https://github.com/sbt/sbt/pull/4033 [4036]: https://github.com/sbt/sbt/pull/4036
[util152]: https://github.com/sbt/util/pull/152 [lm213]: https://github.com/sbt/librarymanagement/pull/213
[lm214]: https://github.com/sbt/librarymanagement/pull/214 [lm215]:
https://github.com/sbt/librarymanagement/pull/215 [lm217]: https://github.com/sbt/librarymanagement/pull/217
[lm218]: https://github.com/sbt/librarymanagement/pull/218 [zinc502]:
https://github.com/sbt/zinc/pull/502 [zinc505]: https://github.com/sbt/zinc/pull/505
[zinc513]: https://github.com/sbt/zinc/pull/513 [lp211]: https://github.com/sbt/sbt-
launcher-package/pull/211 [lp219]: https://github.com/sbt/sbt-launcher-
package/pull/219 [lp220]: https://github.com/sbt/sbt-launcher-package/pull/220
[lp222]: https://github.com/sbt/sbt-launcher-package/pull/222 [CON-
TRIBUTING]: https://github.com/sbt/sbt/blob/1.x/CONTRIBUTING.md

166

sbt 1.1.1

Bug fixes

• Fixes “Modified names for (class) is empty” error. [zinc#292][zinc292] /
[zinc#484][zinc484] by [@jvican][@jvican] (Scala Center)

• Fixes tab completion in console while running in batch mode as sbt
console. [#3841][3841]/[#3876][3876] by [@eed3si9n][@eed3si9n]

• Fixes file timestamp retrieval of missing files on Windows. [#3871][3871]
/ [io#120][io120] by [@cunei][@cunei]

• Aligns the errors thrown by file timestamp implementations. Fixes
[#3894][3894] / [io#121][io121] by [@j-keck][@j-keck]

• Adds file timestamps native support for FreeBSD. [#3894][3894] /
[io#124][io124] by [@cunei][@cunei]

• Fixes JDK 10 version string parsing. [sbt/sbt-launcher-package#209][launcher209]
by [@2m][@2m]

Improvements

• Deprecates Extracted#append in favour of appendWithSession or
appendWithoutSession. [#3865][3865] by [@dwijnand][@dwijnand]

• Adds a new global Boolean setting called autoStartServer. See below.
• Upgrades Scala versions used for sbt cross building ^^. [#3923][3923] by

[@dwijnand][@dwijnand]
• Many documentation maintenance changes by [@xuwei-k][@xuwei-k].

autoStartServer setting

sbt 1.1.1 adds a new global Boolean setting called autoStartServer, which is
set to true by default. When set to true, sbt shell will automatically start sbt
server. Otherwise, it will not start the server until startSever command is
issued. This could be used to opt out of server for security reasons.

[#3922][3922] by [@swaldman][@swaldman]

Contributors

sbt 1.1.1 was brought to you by 16 contributors, according to git shortlog
-sn --no-merges v1.1.0 ..v1.1.0 on sbt, zinc, librarymanagement, util, io,
and website: Kenji Yoshida (xuwei-k), Eugene Yokota, Dale Wijnand, Anto-
nio Cunei, Steve Waldman, Arnout Engelen, Deokhwan Kim, OlegYch, Robert
Walker, Jorge Vicente Cantero (jvican), Claudio Bley, Eric Peters, Lena Brüder,
Seiya Mizuno, Seth Tisue, j-keck. Thank you!

[@eed3si9n]: https://github.com/eed3si9n [@dwijnand]: https://github.com/dwijnand
[@cunei]: https://github.com/cunei [@jvican]: https://github.com/jvican

167

[@Duhemm]: https://github.com/Duhemm [@j-keck]: https://github.com/j-
keck [@swaldman]: https://github.com/swaldman [@xuwei-k]: https://github.com/xuwei-
k [@2m]: https://github.com/2m [3871]: https://github.com/sbt/sbt/issues/3871
[io120]: https://github.com/sbt/io/pull/120 [3894]: https://github.com/sbt/sbt/issues/3894
[io121]: https://github.com/sbt/io/pull/121 [io124]: https://github.com/sbt/io/pull/124
[zinc292]: https://github.com/sbt/zinc/issues/292 [zinc484]: https://github.com/sbt/zinc/pull/484
[3865]: https://github.com/sbt/sbt/pull/3865 [3841]: https://github.com/sbt/sbt/issues/3841
[3876]: https://github.com/sbt/sbt/pull/3876 [3923]: https://github.com/sbt/sbt/pull/3923
[3922]: https://github.com/sbt/sbt/pull/3922 [launcher209]: https://github.com/sbt/sbt-
launcher-package/pull/209

sbt 1.1.0

This is a feature release for sbt 1.0.x series.

Features, fixes, changes with compatibility implications

• sbt server feature is reworked in sbt 1.1.0. See below.
• Changes version setting default to 0.1.0-SNAPSHOT for compatibility

with Semantic Versioning. [#3577][3577] by [@laughedelic][@laughedelic]

Features

• Unifies sbt shell and build.sbt syntax. See below.

Fixes

• Fixes ClasspathFilter that was causing Class.forName to not work
in run. zinc#473 / #3736 / #3733 / #3647 / #3608 by [@ravwo-
jdyla][@ravwojdyla]

• Fixes Java compilation causing NullPointerException by making Posi-
tionImpl thread-safe. zinc#465 by [@eed3si9n][@eed3si9n]

• Fixes PollingWatchService by preventing concurrent modification of
keysWithEvents map. io#90 by [@mechkg][@mechkg], which fixes ~ re-
lated issues #3687, #3695, and #3775.

• Provides workaround for File#lastModified() losing millisecond-
precision by using native code when possible. io#92/io#106 by
[@cunei][@cunei]

• Fixes IO.relativize not working with relative path. io#108 by [@dwij-
nand][@dwijnand]

• Fixes warning message when multiple instances are detected. #3828 by
[@eed3si9n][@eed3si9n]

168

https://github.com/sbt/zinc/pull/473
https://github.com/sbt/sbt/issues/3736
https://github.com/sbt/sbt/issues/3733
https://github.com/sbt/sbt/issues/3647
https://github.com/sbt/sbt/issues/3608
https://github.com/sbt/zinc/pull/465
https://github.com/sbt/io/pull/90
https://github.com/sbt/sbt/issues/3687
https://github.com/sbt/sbt/issues/3695
https://github.com/sbt/sbt/issues/3775
https://github.com/sbt/io/pull/92
https://github.com/sbt/io/pull/106
https://github.com/sbt/io/pull/108
https://github.com/sbt/sbt/pull/3828

• Fixes over-compilation bug with Java 9. [zinc#450][zinc450] by
[@retronym][@retronym]

• Fixes handling of deeply nested Java classes. [zinc#423][zinc423] by [@ro-
manowski][@romanowski]

• Fixes JavaDoc not printing all errors. [zinc#415][zinc415] by [@ra-
boof][@raboof]

• Preserves JAR order in ScalaInstance.otherJars. [zinc#411][zinc411]
by [@dwijnand][@dwijnand]

• Fixes used name when it contains NL. [zinc#449][zinc449] by
[@jilen][@jilen]

• Fixes handling of ThisProject. [#3609][3609] by [@dwijnand][@dwijnand]
• Escapes imports from sbt files, so if user creates a backquoted definition

then task evaluation will not fail. [#3635][3635] by [@panaeon][@panaeon]
• Removes reference to version 0.14.0 from a warning message. [#3693][3693]

by [@saniyatech][@saniyatech]
• Fixes screpl throwing “Not a valid key: console-quick”. [#3762][3762] by

[@xuwei-k][@xuwei-k]
• Restores Scala 2.13.0-M1 support. #461 by [@dwijnand][@dwijnand]
• Fixes the encoding of Unix-like file path to use file:///. #3805 by

[@eed3si9n][@eed3si9n]
• Fixes Log4J2 initialization error during startup. #3814 by [@dwij-

nand][@dwijnand]

Improvements

• Filters scripted tests based on optional project/build.properties. See
below.

• Adds Project#withId to change a project’s id. [#3601][3601] by [@dwij-
nand][@dwijnand]

• Adds reboot dev command, which deletes the current artifact from the
boot directory. This is useful when working with development versions of
sbt. [#3659][3659] by [@eed3si9n][@eed3si9n]

• Adds a check for a change in sbt version before reload. [#1055][1055]/[#3673][3673]
by [@RomanIakovlev][@RomanIakovlev]

• Adds a new setting insideCI, which indicates that sbt is likely running
in an Continuous Integration environment. [#3672][3672] by [@RomanI-
akovlev][@RomanIakovlev]

• Adds nameOption to Command trait. [#3671][3671] by [@miklos-
martin][@miklos-martin]

• Adds POSIX permission operations in IO, such as IO.chmod(..).
[io#76][io76] by [@eed3si9n][@eed3si9n]

• Treat sbt 1 modules using Semantic Versioning in the eviction warning.
[lm#188][lm188] by [@eed3si9n][@eed3si9n]

• Uses kind-projector in the code. [#3650][3650] by [@dwijnand][@dwijnand]
• Make displayOnly etc methods strict in Completions. [#3763][3763] by

169

https://github.com/sbt/sbt/pull/3805
https://github.com/sbt/sbt/pull/3814

[@xuwei-k][@xuwei-k]

Unified slash syntax for sbt shell and build.sbt

This adds unified slash syntax for both sbt shell and the build.sbt DSL.
Instead of the current <project-id>/config:intask::key, this adds
<project-id>/<config-ident>/intask/key where <config-ident> is the
Scala identifier notation for the configurations like Compile and Test. (The
old shell syntax will continue to function)

These examples work both from the shell and in build.sbt.

Global / cancelable ThisBuild / scalaVersion Test / test root / Compile / com-
pile / scalacOptions ProjectRef(uri(“file:/xxx/helloworld/”),“root”)/Compile/scalacOptions
Zero / Zero / name

The inspect command now outputs something that can be copy-pasted:

inspect compile [info] Task: sbt.inc.Analysis [info] Descrip-
tion: [info] Compiles sources. [info] Provided by: [info] Pro-
jectRef(uri(“file:/xxx/helloworld/”),“root”)/Compile/compile
[info] Defined at: [info] (sbt.Defaults) Defaults.scala:326 [info]
Dependencies: [info] Compile/manipulateBytecode [info] Com-
pile/incCompileSetup ….

[#1812][1812]/[#3434][3434]/[#3617][3617]/[#3620][3620] by [@eed3si9n][@eed3si9n]
and [@dwijnand][@dwijnand]

sbt server

sbt server feature was reworked to use Language Server Protocol 3.0 (LSP) as
the wire protocol, a protocol created by Microsoft for Visual Studio Code.

To discover a running server, sbt 1.1.0 creates a port file at ./project/target/active.json
relative to a build:

{"uri":"local:///Users/foo/.sbt/1.0/server/0845deda85cb41abcdef/sock"}

local: indicates a UNIX domain socket. Here’s how we can say hello to the
server using nc. (^M can be sent Ctrl-V then Return):

$ nc -U /Users/foo/.sbt/1.0/server/0845deda85cb41abcdef/sock
Content-Length: 99^M
^M
{ "jsonrpc": "2.0", "id": 1, "method": "initialize", "params": { "initializationOptions": { } } }^M

sbt server adds network access to sbt’s shell command so, in addition to ac-
cepting input from the terminal, server also to accepts input from the network.
Here’s how we can call compile:

170

Content-Length: 93^M
^M
{ "jsonrpc": "2.0", "id": 2, "method": "sbt/exec", "params": { "commandLine": "compile" } }^M

The running sbt session should now queue compile, and return back with com-
piler warnings and errors, if any:

Content-Length: 296
Content-Type: application/vscode-jsonrpc; charset=utf-8

{"jsonrpc":"2.0","method":"textDocument/publishDiagnostics","params":{"uri":"file:/Users/foo/work/hellotest/Hello.scala","diagnostics":[{"range":{"start":{"line":2,"character":26},"end":{"line":2,"character":27}},"severity":1,"source":"sbt","message":"object X is not a member of package foo"}]}}

[#3524][3524]/[#3556][3556] by [@eed3si9n][@eed3si9n]

VS Code extension

The primary use case we have in mind for the sbt server is tooling integration
such as editors and IDEs. As a proof of concept, we created a Visual Studio
Code extension called Scala (sbt).

Currently this extension is able to:

• Run compile at the root project when *.scala files are saved.
[#3524][3524] by [@eed3si9n][@eed3si9n]

• Display compiler errors.
• Display log messages. [#3740][3740] by [@laughedelic][@laughedelic]
• Jump to class definitions. [#3660][3660] by [@wpopielarski][@wpopielarski]

Filtering scripted tests using project/build.properties

For all scripted tests in which project/build.properties exist, the value
of the sbt.version property is read. If its binary version is different from
sbtBinaryVersion in pluginCrossBuild the test will be skipped and a mes-
sage indicating this will be logged.

This allows you to define scripted tests that track the minimum supported
sbt versions, e.g. 0.13.9 and 1.0.0-RC2. [#3564][3564]/[#3566][3566] by
[@jonas][@jonas]

Contributors

sbt 1.1.0 was brought to you by 33 contributors, according to git shortlog
-sn --no-merges v1.0.4..v1.1.0 on sbt, zinc, librarymanagement, util, io,
and website: Eugene Yokota, Dale Wijnand, Antonio Cunei, Kenji Yoshida
(xuwei-k), Alexey Alekhin, Simon Schäfer, Jorge Vicente Cantero (jvican), Mik-
los Martin, Jeffrey Olchovy, Jonas Fonseca, Andrey Artemov, Arnout Engelen,
Dominik Winter, Krzysztof Romanowski, Roman Iakovlev, Wiesław Popielarski,
Age Mooij, Allan Timothy Leong, Ivan Poliakov, Jason Zaugg, Jilen Zhang,

171

https://marketplace.visualstudio.com/items?itemName=lightbend.vscode-sbt-scala

Long Jinwei, Martin Duhem, Michael Stringer, Michael Wizner, Nud Teera-
woramongkol, OlegYch, PanAeon, Philippus Baalman, Pierre Dal-Pra, Rafal
Wojdyla, Saniya Tech, Tom Walford, and many others who contributed ideas.
Thank you!

[@eed3si9n]: https://github.com/eed3si9n [@dwijnand]: https://github.com/dwijnand
[@cunei]: https://github.com/cunei [@jvican]: https://github.com/jvican
[@Duhemm]: https://github.com/Duhemm [@jonas]: https://github.com/jonas
[@laughedelic]: https://github.com/laughedelic [@panaeon]: https://github.com/panaeon
[@RomanIakovlev]: https://github.com/RomanIakovlev [@miklos-martin]:
https://github.com/miklos-martin [@saniyatech]: https://github.com/saniyatech
[@xuwei-k]: https://github.com/xuwei-k [@wpopielarski]: https://github.com/wpopielarski
[@retronym]: https://github.com/retronym [@romanowski]: https://github.com/romanowski
[@raboof]: https://github.com/raboof [@jilen]: https://github.com/jilen
[@mechkg]: https://github.com/mechkg [@ravwojdyla]: https://github.com/ravwojdyla
vscode-sbt-scala: https://marketplace.visualstudio.com/items?itemName=lightbend.vscode-
sbt-scala [1812]: https://github.com/sbt/sbt/issues/1812 [3524]: https://github.com/sbt/sbt/pull/3524
[3556]: https://github.com/sbt/sbt/pull/3556 [3564]: https://github.com/sbt/sbt/issues/3564
[3566]: https://github.com/sbt/sbt/pull/3566 [3577]: https://github.com/sbt/sbt/pull/3577
[3434]: https://github.com/sbt/sbt/pull/3434 [3601]: https://github.com/sbt/sbt/pull/3601
[3609]: https://github.com/sbt/sbt/pull/3609 [3617]: https://github.com/sbt/sbt/pull/3617
[3620]: https://github.com/sbt/sbt/pull/3620 [3464]: https://github.com/sbt/sbt/issues/3464
[3635]: https://github.com/sbt/sbt/pull/3635 [3659]: https://github.com/sbt/sbt/pull/3659
[3650]: https://github.com/sbt/sbt/pull/3650 [3673]: https://github.com/sbt/sbt/pull/3673
[1055]: https://github.com/sbt/sbt/issues/1055 [3672]: https://github.com/sbt/sbt/pull/3672
[3671]: https://github.com/sbt/sbt/pull/3671 [3693]: https://github.com/sbt/sbt/issues/3693
[3763]: https://github.com/sbt/sbt/pull/3763 [3762]: https://github.com/sbt/sbt/pull/3762
[3740]: https://github.com/sbt/sbt/pull/3740 [3660]: https://github.com/sbt/sbt/pull/3660
[io76]: https://github.com/sbt/io/pull/76 [lm188]: https://github.com/sbt/librarymanagement/pull/188
[zinc450]: https://github.com/sbt/zinc/pull/450 [zinc423]: https://github.com/sbt/zinc/pull/423
[zinc415]: https://github.com/sbt/zinc/issues/415 [zinc411]: https://github.com/sbt/zinc/pull/411
[zinc449]: https://github.com/sbt/zinc/pull/449

sbt 1.0.x releases

sbt 1.0.4

This is a hotfix release for sbt 1.0.x series.

Bug fixes

• Fixes undercompilation of value classes when the underlying type changes.
[zinc#444][zinc444] by [@smarter][@smarter]

• Fixes ArrayIndexOutOfBoundsException on Ivy when running on Java
9. [ivy#27][ivy27] by [@xuwei-k][@xuwei-k]

172

https://marketplace.visualstudio.com/items?itemName=lightbend.vscode-sbt-scala

• Fixes Java 9 warning by upgrading to launcher 1.0.2. [ivy#26][ivy26]/[launcher#45][launcher45]
by [@dwijnand][@dwijnand]

• Fixes -jvm-debug on Java 9. [launcher-package197][sbt-launcher-
package197] by [@mkurz][@mkurz]

• Fixes run outputting debug level logs. [#3655][3655]/[#3717][3717] by
[@cunei][@cunei]

• Fixes performance regression caused by classpath hashing. [zinc#452][zinc452]
by [@jvican][@jvican], [@fommil][@fommil] provided reproduction, and
[@eed3si9n][@eed3si9n] fixed https://github.com/sbt/zinc/issues/457

• Fixes performance regression of testQuick. [#3680][3680]/[#3720][3720]
by [@OlegYch][@OlegYch]

• Disables Ivy log4j caller location calculation for performance regression
reported in [#3711][3711]. [util#132][util132] by [@leonardehren-
fried][@leonardehrenfried]

• Works around Scala compiler’s templateStats() not being thread-safe.
[#3743][3743] by [@cunei][@cunei]

• Fixes “Attempting to overwrite” error message. [lm#174][lm174] by
[@dwijnand][@dwijnand]

• Fixes incorrect eviction warning message. [lm#179][lm179] by [@xuwei-
k][@xuwei-k]

• Registers Ivy protocol only for http: and https: to be more plugin
friendly. [lm183][lm183] by [@tpunder][@tpunder]

• Fixes script issues related to bc by using expr. [launcher-package#199][sbt-
launcher-package199] by [@thatfulvioguy][@thatfulvioguy]

Enhancement

• Adds Scala 2.13.0-M2 support. [zinc#453][zinc453] by [@eed3si9n][@eed3si9n]
and [@jan0sch][@jan0sch]

Internal

• Improves Zinc scripted testing. [zinc#440][zinc440] by [@jvican][@jvican]

Contributors

A huge thank you to everyone who’s helped improve sbt and Zinc 1 by using
them, reporting bugs, improving our documentation, porting builds, porting
plugins, and submitting and reviewing pull requests.

This release was brought to you by 17 contributors, according to git shortlog
-sn --no-merges v1.0.3..v1.0.4 on sbt, zinc, librarymanagement, util, io,
and website: Eugene Yokota, Kenji Yoshida (xuwei-k), Jorge Vicente Cantero
(jvican), Dale Wijnand, Leonard Ehrenfried, Antonio Cunei, Brett Randall,
Guillaume Martres, Arnout Engelen, Fulvio Valente, Jens Grassel, Matthias

173

Kurz, OlegYch, Philippus Baalman, Sam Halliday, Tim Underwood, Tom Most.
Thank you!

[@dwijnand]: https://github.com/dwijnand [@cunei]: https://github.com/cunei
[@eed3si9n]: https://github.com/eed3si9n [@jvican]: https://github.com/jvican
[@OlegYch]: https://github.com/OlegYch [@leonardehrenfried]: https://github.com/leonardehrenfried
[@xuwei-k]: https://github.com/xuwei-k [@tpunder]: https://github.com/tpunder
[@smarter]: https://github.com/smarter [@jan0sch]: https://github.com/jan0sch
[@mkurz]: https://github.com/mkurz [@thatfulvioguy]: https://github.com/thatfulvioguy
[@fommil]: https://github.com/fommil [3655]: https://github.com/sbt/sbt/issues/3655
[3717]: https://github.com/sbt/sbt/pull/3717 [ivy26]: https://github.com/sbt/ivy/pull/26
[ivy27]: https://github.com/sbt/ivy/pull/27 [launcher45]: https://github.com/sbt/launcher/pull/45
[3680]: https://github.com/sbt/sbt/issues/3680 [3720]: https://github.com/sbt/sbt/pull/3720
[3743]: https://github.com/sbt/sbt/pull/3743 [3711]: https://github.com/sbt/sbt/issues/3711
[util132]: https://github.com/sbt/util/pull/132 [lm174]: https://github.com/sbt/librarymanagement/pull/174
[lm179]: https://github.com/sbt/librarymanagement/pull/179 [lm183]:
https://github.com/sbt/librarymanagement/pull/183 [zinc452]: https://github.com/sbt/zinc/pull/452
[zinc444]: https://github.com/sbt/zinc/pull/444 [zinc453]: https://github.com/sbt/zinc/pull/453
[zinc440]: https://github.com/sbt/zinc/pull/440 [sbt-launcher-package197]:
https://github.com/sbt/sbt-launcher-package/pull/197 [sbt-launcher-package199]:
https://github.com/sbt/sbt-launcher-package/pull/199

sbt 1.0.3

This is a hotfix release for sbt 1.0.x series.

Bug fixes

• Fixes ~ recompiling in loop (when a source generator or sbt-buildinfo is
present). [#3501][3501]/[#3634][3634] by [@dwijnand][@dwijnand]

• Fixes undercompilation on inheritance on same source. [zinc#424][zinc424]
by [@eed3si9n][@eed3si9n]

• Fixes the compilation of package-protected objects. [zinc#431][zinc431]
by [@jvican][@jvican]

• Workaround for Java returning null for getGenericParameterTypes.
[zinc#446][zinc446] by [@jvican][@jvican]

• Fixes test detection regression. sbt 1.0.3 filters out nested objects/classes
from the list, restoring compatibility with 0.13. [#3669][3669] by
[@cunei][@cunei]

• Uses Scala 2.12.4 for the build definition. This includes fix for runtime
reflection of empty package members under Java 9. [#3587][3587] by
[@eed3si9n][@eed3si9n]

• Fixes extra / in Ivy style patterns. [lm#170][lm170] by [@laughedelic][@laughedelic]

174

• Fixes “destination file exist” error message by including the file name.
[lm171][lm171] by [@leonardehrenfried][@leonardehrenfried]

• Fixes JDK 9 warning “Illegal reflective access” in library management
module and Ivy. [lm173][lm173] by [@dwijnand][@dwijnand]

Improvements

• Adds sbt.watch.mode system property to allow switching back to old
polling behaviour for watch. See below for more details.

Alternative watch mode

sbt 1.0.0 introduced a new mechanism for watching for source changes based
on the NIO WatchService in Java 1.7. On some platforms (namely macOS)
this has led to long delays before changes are picked up. An alternative
WatchService for these platforms is planned for sbt 1.1.0 ([#3527][3527]), in
the meantime an option to select which watch service has been added.

The new sbt.watch.mode JVM flag has been added with the following sup-
ported values:

• polling: (default for macOS) poll the filesystem for changes (mechanism
used in sbt 0.13).

• nio (default for other platforms): use the NIO based WatchService.

If you are experiencing long delays on a non-macOS machine then try adding
-Dsbt.watch.mode=polling to your sbt options.

[#3597][3597] by [@stringbean][@stringbean]

Contributors

A huge thank you to everyone who’s helped improve sbt and Zinc 1 by using
them, reporting bugs, improving our documentation, porting builds, porting
plugins, and submitting and reviewing pull requests.

This release was brought to you by 15 contributors, according to git shortlog
-sn --no-merges v1.0.2..v1.0.3 on sbt, zinc, librarymanagement, util, io,
and website: Eugene Yokota, Dale Wijnand, Michael Stringer, Jorge Vicente
Cantero (jvican), Alexey Alekhin, Antonio Cunei, Andrey Artemov, Jeffrey Ol-
chovy, Kenji Yoshida (xuwei-k), Dominik Winter, Long Jinwei, Arnout Engelen,
Justin Kaeser, Leonard Ehrenfried, Sakib Hadžiavdić. Thank you!

[@dwijnand]: https://github.com/dwijnand [@cunei]: https://github.com/cunei
[@eed3si9n]: https://github.com/eed3si9n [@jvican]: https://github.com/jvican
[@stringbean]: https://github.com/stringbean [@laughedelic]: https://github.com/laughedelic
[@leonardehrenfried]: https://github.com/leonardehrenfried [3669]: https://github.com/sbt/sbt/pull/3669
[3583]: https://github.com/sbt/sbt/issues/3583 [3587]: https://github.com/sbt/sbt/issues/3587

175

[3527]: https://github.com/sbt/sbt/issues/3527 [3597]: https://github.com/sbt/sbt/pull/3597
[3501]: https://github.com/sbt/sbt/issues/3501 [3634]: https://github.com/sbt/sbt/pull/3634
[lm170]: https://github.com/sbt/librarymanagement/pull/170 [lm171]:
https://github.com/sbt/librarymanagement/pull/171 [lm173]: https://github.com/sbt/librarymanagement/pull/173
[zinc424]: https://github.com/sbt/zinc/pull/424 [zinc431]: https://github.com/sbt/zinc/pull/431
[zinc446]: https://github.com/sbt/zinc/pull/446

sbt 1.0.2

This is a hotfix release for sbt 1.0.x series.

Bug fixes

• Fixes terminal echo issue. [#3507][3507] by [@kczulko][@kczulko]
• Fixes deliver task, and adds makeIvyXml as a more sensibly named task.

[#3487][3487] by [@cunei][@cunei]
• Replaces the deprecated use of OkUrlFactory, and fixes connection leaks.

[lm#164][lm164] by [@dpratt][@dpratt]
• Refixes false positive in DSL checker for setting keys. [#3513][3513] by

[@dwijnand][@dwijnand]
• Fixes run and bgRun not picking up changes to directories in the classpath.

[#3517][3517] by [@dwijnand][@dwijnand]
• Fixes ++ so it won’t change the value of crossScalaVersion.

[#3495][3495]/[#3526][3526] by [@dwijnand][@dwijnand]
• Fixes sbt server missing some messages. [#3523][3523] by [@guillaume-

bort][@guillaumebort]
• Refixes consoleProject. [zinc#386][zinc386] by [@dwijnand][@dwijnand]
• Adds JVM flag sbt.gigahorse to enable/disable the internal use

of Gigahorse to workaround NPE in JavaNetAuthenticator when
used in conjunction with repositories override. [lm#167][lm167] by
[@cunei][@cunei]

• Adds JVM flag sbt.server.autostart to enable/disable the automatic
starting of sbt server with the sbt shell. This also adds new startServer
command to manually start the server. by [@eed3si9n][@eed3si9n]

Internal

• Fixes unused import warnings. [#3533][3533] by [@razvan-panda][@razvan-
panda]

Contributors

176

A huge thank you to everyone who’s helped improve sbt and Zinc 1 by using
them, reporting bugs, improving our documentation, porting plugins, and sub-
mitting and reviewing pull requests.

This release was brought to you by 19 contributors, according to git shortlog
-sn --no-merges v1.0.1..v1.0.2 on sbt, zinc, librarymanagement, and web-
site: Dale Wijnand, Eugene Yokota, Kenji Yoshida (xuwei-k), Antonio Cunei,
David Pratt, Karol Cz (kczulko), Amanj Sherwany, Emanuele Blanco, Eric Pe-
ters, Guillaume Bort, James Roper, Joost de Vries, Marko Elezovic, Martynas
Mickevičius, Michael Stringer, Răzvan Flavius Panda, Peter Vlugter, Philippus
Baalman, and Wiesław Popielarski. Thank you!

[@dwijnand]: https://github.com/dwijnand [@cunei]: https://github.com/cunei
[@eed3si9n]: https://github.com/eed3si9n [@dpratt]: https://github.com/dpratt
[@kczulko]: https://github.com/kczulko [@razvan-panda]: https://github.com/razvan-
panda [@guillaumebort]: https://github.com/guillaumebort [3487]: https://github.com/sbt/sbt/pull/3487
[lm164]: https://github.com/sbt/librarymanagement/pull/164 [3495]:
https://github.com/sbt/sbt/issues/3495 [3526]: https://github.com/sbt/sbt/pull/3526
[3513]: https://github.com/sbt/sbt/pull/3513 [3517]: https://github.com/sbt/sbt/pull/3517
[3507]: https://github.com/sbt/sbt/pull/3507 [3533]: https://github.com/sbt/sbt/pull/3533
[3523]: https://github.com/sbt/sbt/pull/3523 [zinc386]: https://github.com/sbt/zinc/pull/386
[lm167]: https://github.com/sbt/librarymanagement/pull/167

sbt 1.0.1

This is a hotfix release for sbt 1.0.x series.

Bug fixes

• Fixes command support for cross building + command. The + added
to sbt 1.0 traveres over the subprojects, respecting crossScalaVersions;
however, it no longer accepted commands as arguments. This brings back
the support for it. #3446 by [@jroper][@jroper]

• Fixes addSbtPlugin to use the correct version of sbt during cross building.
#3442 by [@dwijnand][@dwijnand]

• Fixes run in Compile task not including Runtime configuration, by reim-
plementing run in terms of bgRun. #3477 by [@eed3si9n][@eed3si9n]

• Shows actual as a potential option of inspect #3335 by [@Duhemm][@Duhemm]
• Includes base directory to watched sources. #3439 by [@Duhemm][@Duhemm]
• Adds an attempt to workaround intermittent NullPointerException ar-

round logging. util#121 by [@eed3si9n][@eed3si9n]
• Reverts a bad forward porting. #3481 by [@eed3si9n][@eed3si9n]

177

https://github.com/sbt/sbt/pull/3446
https://github.com/sbt/sbt/pull/3442
https://github.com/sbt/sbt/pull/3477
https://github.com/sbt/sbt/pull/3335
https://github.com/sbt/sbt/pull/3439
https://github.com/sbt/util/pull/121
https://github.com/sbt/sbt/pull/3481

WatchSource

The watch source feature went through a major change from sbt 0.13 to sbt 1.0
using NIO; however, it did not have clear migration path, so we are rectifying
that in sbt 1.0.1.

First, sbt.WatchSource is a new alias for sbt.internal.io.Source. Hopefully
this is easy enough to remember because the key is named watchSources. Next,
def apply(base: File) and def apply(base: File, includeFilter:
FileFilter, excludeFilter: FileFilter) constructors were added to the
companion object of sbt.WatchSource.

For backward compatiblity, sbt 1.0.1 adds += support (Append instance) from
File to Seq[WatchSource].

So, if you have a directory you want to watch:

watchSources += WatchSource(sourceDirectory.value)

If you have a list of files:

watchSources ++= (sourceDirectory.value ** ”*.scala”).get

#3438 by [@Duhemm][@Duhemm]; #3478 and io#74 by [@eed3si9n][@eed3si9n]

[@eed3si9n]: https://github.com/eed3si9n [@dwijnand]: https://github.com/dwijnand
[@jvican]: https://github.com/jvican [@Duhemm]: https://github.com/Duhemm
[@jroper]: https://github.com/jroper

sbt 1.0.0

Features, fixes, changes with compatibility implications

See Migrating from sbt 0.13.x also.

• sbt 1.0 uses Scala 2.12 for build definitions and plugins. This also requires
JDK 8.

• Many of the case classes are replaced with pseudo case classes generated
using Contraband. Migrate .copy(foo = xxx) to withFoo(xxx).
For example, UpdateConfiguration, RetrieveConfiguration,
PublishConfiguration are refactored to use builder pattern.

• Zinc 1 drops support for Scala 2.9 and earlier. Scala 2.10 must use 2.10.2
and above. Scala 2.11 must use 2.11.2 and above. (latest patch releases
are recommended)

• config("xyz") must be directly assigned to a capitalized val, like val
Xyz = config("xyz"). This captures the lhs identifier into the configu-
ration so we can use it from the shell later.

• Changes publishTo and otherResolvers from SettingKeys to TaskKeys.
[#2059][2059]/[#2662][2662] by [@dwijnand][@dwijnand]

178

https://github.com/sbt/sbt/pull/3438
https://github.com/sbt/sbt/pull/3478
https://github.com/sbt/io/pull/74
Migrating-from-sbt-013x.html

• Path.relativizeFile(baseFile, file) is renamed to IO.relativizeFile(baseFile,
file).

• PathFinder’s .*** method is renamed to .allPaths method.
• PathFinder.x_!(mapper) is moved to def pair on PathFinder.
• A number of the methods on sbt.Path (such as relativeTo and rebase

and flat) are now no longer in the default namespace by virtue of being
mixed into the sbt package object. Use sbt.io.Path to access them again.

• sbt 1.0 renames Global as scope component to Zero to disambiguate from
GlobalScope. [@eed3si9n][@eed3si9n]

• sbt 1.0 uses ConfigRef in places where String was used to reference
configuration, such as update.value.configuration(...). Pass in
Configuration, which implicitly converts to ConfigRef.

• Changes sourceArtifactTypes and docArtifactTypes from Set[String]
to Seq[String] settings.

• Renames early command feature from --<command> to early(<command>).
• Drops sbt 0.12 style hyphen-separated key names (use publishLocal in-

stead of publish-local).
• Log options -error, -warn, -info, -debug are added as shorthand for

"early(error)" etc.
• sbt.Process and sbt.ProcessExtra are dropped. Use scala.sys.process

instead.
• incOptions.value.withNameHashing(...) option is removed because

name hashing is always on.
• TestResult.Value is now called TestResult.
• The scripted plugin is cross-versioned now, so you must use %% when de-

pending on it.

Dropped dreprecations:

• sbt 0.12 style Build trait that was deprecated in sbt 0.13.12, is removed.
Please migrate to build.sbt. Auto plugins and Build trait do not work
well together, and its feature is now largely subsumed by multi-project
build.sbt.

• sbt 0.12 style Project(...) constructor is restricted down to two param-
eters. This is because settings parameter does not work well with Auto
Plugins. Use project instead.

• sbt 0.12 style key dependency operators <<=, <+=, <++= are removed.
Please migrate to :=, +=, and ++=. These operators have been sources
of confusion for many users, and have long been removed from 0.13 docs,
and have been formally deprecated since sbt 0.13.13.

• Non-auto sbt.Plugin trait is dropped. Please migrate to AutoPlugin.
Auto plugins are easier to configure, and work better with each other.

• Removes the settingsSets method from Project (along with
add/setSbtFiles).

• Drops deprecated InputTask apply method and inputTask DSL method.
Use Def.inputTask and Def.spaceDelimited().parsed.

• Drops deprecated ProjectReference implicit lifts. Use RootProject(<uri>),

179

Migrating-from-sbt-013x.html#Migrating+from+the+Build+trait
Migrating-from-sbt-013x.html#Migrating+simple+expressions

RootProject(<file>) or LocalProject(<string>).
• Drops deprecated seq(..) DSL method. Use Seq or pass in the settings

without wrapping.
• Drops deprecated File/Seq[File] setting enrichments. Use .value and

Def.setting.
• Drops deprecated SubProcess apply overload. Use SubProcess(ForkOptions(runJVMOptions

= ..)).
• Drops toError(opt: Option[String]): Unit (equivalent to opt

foreach sys.error); if used to wrap ScalaRun#run then the replacement
is scalaRun.run(...).failed foreach (sys error _.getMessage)

Features

• New incremental compiler called Zinc 1. Details below.
• The interactive shell is adds network API. Details below.

Fixes

• Fixes test content log not showing up. [#3198][3198]/[util#80][util80] by
[@eed3si9n][@eed3si9n]

• Fixes confusing log about “Unable to parse”. [lm#98][lm98] by [@jvi-
can][@jvican]

• Fixes console task. [zinc#295][zinc295] by [@dwijnand][@dwijnand]
• Fixes spurious recompilations when unrelated constructor changes.

[zinc#288][zinc288] by [@smarter][@smarter]
• Fixes restligeist macro for old operators. [#3218][3218] by [@eed3si9n][@eed3si9n]
• Fixes task caching of update task. [#3233][3233] by [@eed3si9n][@eed3si9n]
• Fixes ncurses-JLine issue by updating to JLine 2.14.4. [util#81][util81] by

[@Rogach][@Rogach]

Improvements

• Scala Center contributed a Java-friendly Zinc API. This was a overhaul of
the Zinc internal API for a good Scala integration with other build tools.
[zinc#304][zinc304] by [@jvican][@jvican]

• Scala Center contributed a binary format for Zinc’s internal storage. See
below

• Scala Center contributed static validation of build.sbt. See below
• Library management API and parallel artifact download. See below.
• The startup log level is dropped to -error in script mode using scalas.

[#840][840] by [@eed3si9n][@eed3si9n]
• Replace cross building support with sbt-doge. This allows builds with

projects that have multiple different combinations of cross scala versions
to be cross built correctly. The behaviour of ++ is changed so that it
only updates the Scala version of projects that support that Scala version,

180

but the Scala version can be post fixed with ! to force it to change for all
projects. A -v argument has been added that prints verbose information
about which projects are having their settings changed along with their
cross scala versions. [#2613][2613] by [@jroper][@jroper]

• ivyLoggingLevel is dropped to UpdateLogging.Quiet when CI environ-
ment is detected. [@eed3si9n][@eed3si9n]

• Add logging of the name of the different build.sbt (matching *.sbt) files
used. [#1911][1911] by [@valydia][@valydia]

• Add the ability to call aggregate for the current project inside a build
sbt file. By [@xuwei-k][@xuwei-k]

• Add new global setting asciiGraphWidth that controls the maximum
width of the ASCII graphs printed by commands like inspect tree. De-
fault value corresponds to the previously hardcoded value of 40 characters.
By [@RomanIakovlev][@RomanIakovlev].

• Revamped documentation for Scopes, and added Scope Delegation.
[@eed3si9n][@eed3si9n]

• Ports sbt-cross-building’s ^ and ^^ commands for plugin cross building.
See below.

• Adds support for cross-versioned exclusions. [#1518][1518]/[lm#88][lm88]
by [@jvican][@jvican]

• Adds new offline mode to the Ivy-based library management.
[lm#92][lm92] by [@jvican][@jvican]

• A number of features related to dependency locking. See below.
• Improved eviction warning presentation. See below.
• A better main class detection. [zinc#287][zinc287] by [@smarter][@smarter]
• For faster startup, sbt will use Java refection to discover autoImport .

[#3115][3115] by [@jvican][@jvican]
• For faster startup, reuse the same global instance for parsing.

[#3115][3115] by [@jvican][@jvican]
• Adds InteractionService from sbt-core-next to keep compatibility with

sbt 0.13. [#3182][3182] by [@eed3si9n][@eed3si9n]
• Adds new WatchService that abstracts PollingWatchService and Java

NIO. [io#47][io47] by [@Duhemm][@Duhemm] on behalf of The Scala Cen-
ter.

• Adds variants of IO.copyFile and IO.copyDirectory that accept
sbt.io.CopyOptions(). See below for details.

• Path.directory and Path.contentOf are donated from sbt-native-
packager [io#38][io38] by [@muuki88][@muuki88]

• ApiDiff feature used to debug Zinc uses Scala implementation borrowed
from Dotty. [zinc#346][zinc346] by [@Krever][@Krever]

• In Zinc internal, make ExtractAPI use perRunCaches. [zinc#347][zinc347]
by [@gheine][@gheine]

Internals

181

Multi-Project.html#Aggregation
www.scala-sbt.org/0.13/docs/Scopes.html
www.scala-sbt.org/0.13/docs/Scope-Delegation.html

• Adopted Scalafmt for formatting the source code using neo-scalafmt.
• Scala Center contributed a redesign of the scripted test framework that

has batch mode execution. Scripted now reuses the same sbt instance to
run sbt tests, which reduces the CI build times by 50% [#3151][3151] by
[@jvican][@jvican]

• sbt 1.0.0-M6 is built using sbt 1.0.0-M5. [#3184][3184] by [@dwij-
nand][@dwijnand]

Details of major changes

Zinc 1: Class-based name hashing

A major improvement brought into Zinc 1.0 by Grzegorz Kossakowski (com-
missioned by Lightbend) is class-based name hashing, which will speed up the
incremental compilation of Scala in large projects.

Zinc 1.0’s name hashing tracks your code dependendencies at the class level,
instead of at the source file level. The GitHub issue sbt/sbt#1104 lists some
comparisons of adding a method to an existing class in some projects:

ScalaTest AndHaveWord class: Before 49s, After 4s (12x)
Specs2 OptionResultMatcher class: Before 48s, After 1s (48x)
scala/scala Platform class: Before 59s, After 15s (3.9x)
scala/scala MatchCodeGen class: Before 48s, After 17s (2.8x)

This depends on some factors such as how your classes are organized, but you can
see 3x ~ 40x improvements. The reason for the speedup is because it compiles
fewer source files than before by untangling the classes from source files. In
the example adding a method to scala/scala’s Platform class, sbt 0.13’s name
hashing used to compile 72 sources, but the new Zinc compiles 6 sources.

Zinc API changes

• Java classes under the xsbti.compile package such as IncOptions hides
the constructor. Use the factory method xsbti.compile.Foo.of(...).

• Renames ivyScala: IvyScala key to scalaModuleInfo: ScalaModuleInfo.
• xsbti.Reporter#log(...) takes xsbti.Problem as the parameter. Call

log(problem.position, problem.message, problem.severity) to
delegate to the older log(...).

• xsbi.Maybe, xsbti.F0, and sxbti.F1 are changed to correspond-
ing Java 8 classes java.util.Optional, java.util.Supplier and
java.util.Function.

• Removes unused “resident” option. [zinc#345][zinc345] by [@lukeindykiewicz][@lukeindykiewicz]

182

https://github.com/sbt/sbt/issues/1104

sbt server: JSON API for tooling integration

sbt 1.0 includes server feature, which allows IDEs and other tools to query
the build for settings, and invoke commands via a JSON API. Similar to the
way that the interactive shell in sbt 0.13 is implemented with shell command,
“server” is also just shell command that listens to both human input and
network input. As a user, there should be minimal impact because of the server.

In March 2016, we rebooted the “server” feature to make it as small as possible.
We worked in collaboration with JetBrains’ @jastice who works on IntelliJ’s sbt
interface to narrow down the feature list. sbt 1.0 will not have all the things
we originally wanted, but in the long term, we hope to see better integration
between IDE and sbt ecosystem using this system. For example, IDEs will be
able to issue the compile task and retrieve compiler warning as JSON events:

{"type":"xsbti.Problem","message":{"category":"","severity":"Warn","message":"a pure expression does nothing in statement position; you may be omitting necessary parentheses","position":{"line":2,"lineContent":" 1","offset":29,"pointer":2,"pointerSpace":" ","sourcePath":"/tmp/hello/Hello.scala","sourceFile":"file:/tmp/hello/Hello.scala"}},"level":"warn"}

Another related feature that was added is the bgRun task which, for example,
enables a server process to be run in the background while you run tests against
it.

Static validation of build.sbt

sbt 1.0 prohibits .value calls inside the bodies of if expressions and anonymous
functions in a task, @sbtUnchecked annotation can be used to override the
check.

The static validation also catches if you forget to call .value in a body of a
task.

[#3216][3216] and [#3225][3225] by [@jvican][@jvican]

Eviction warning presentation

sbt 1.0 improves the eviction warning presetation.

Before:

[warn] There may be incompatibilities among your library dependen-
cies. [warn] Here are some of the libraries that were evicted: [warn] *
com.google.code.findbugs:jsr305:2.0.1 -> 3.0.0 [warn] Run ‘evicted’ to see
detailed eviction warnings

After:

[warn] Found version conflict(s) in library dependencies; some are sus-
pected to be binary incompatible: [warn] [warn] * com.typesafe.akka:akka-
actor_2.12:2.5.0 is selected over 2.4.17 [warn] +- de.heikoseeberger:akka-
log4j_2.12:1.4.0 (depends on 2.5.0) [warn] +- com.typesafe.akka:akka-
parsing_2.12:10.0.6 (depends on 2.4.17) [warn] +- com.typesafe.akka:akka-

183

https://eed3si9n.com/sbt-server-reboot

stream_2.12:2.4.17 () (depends on 2.4.17) [warn] [warn] Run ‘evicted’ to see
detailed eviction warnings

[#3202][3202] by [@eed3si9n][@eed3si9n]

sbt-cross-building

[@jrudolph][@jrudolph]’s sbt-cross-building is a plugin author’s plugin. It adds
cross command ^ and sbtVersion switch command ^^, similar to + and ++, but
for switching between multiple sbt versions across major versions. sbt 0.13.16
merges these commands into sbt because the feature it provides is useful as we
migrate plugins to sbt 1.0.

To switch the sbtVersion in pluginCrossBuild from the shell use:

^^ 1.0.0-M5

Your plugin will now build with sbt 1.0.0-M5 (and its Scala version 2.12.2).

If you need to make changes specific to a sbt version, you can now include them
into src/main/scala-sbt-0.13, and src/main/scala-sbt-1.0.0-M5, where
the binary sbt version number is used as postfix.

To run a command across multiple sbt versions, set:

crossSbtVersions := Vector("0.13.15", "1.0.0-M5")

Then, run:

^ compile

[#3133][3133] by [@eed3si9n][@eed3si9n] (forward ported from 0.13.16-M1)

CopyOptions

sbt IO 1.0 add variant of IO.copyFile and IO.copyDirectory that accept
sbt.io.CopyOptions(). CopyOptions() is an example of pseudo case class
similar to the builder pattern.

import sbt.io.{ IO, CopyOptions }

IO.copyDirectory(source, target)

// The above is same as the following
IO.copyDirectory(source, target, CopyOptions()
.withOverwrite(false)
.withPreserveLastModified(true)
.withPreserveExecutable(true))

[io#53][io53] by [@dwijnand][@dwijnand]

184

Library management API and parallel artifact download

sbt 1.0 adds Library management API co-authored by Eugene Yokota
([@eed3si9n][@eed3si9n]) from Lightbend and Martin Duhem ([@Duhemm][@Duhemm])
from Scala Center. This API aims to abstract Apache Ivy as well as alternative
dependency resolution engines Ivy, cached resolution, and Coursier.

Parallel artifact download for Ivy engine was contributed by Jorge ([@jvi-
can][@jvican]) from Scala Center. It also introduces Gigahorse OkHttp as the
Network API, and it uses Square OkHttp for artifact download as well.

[lm#124][lm124] by [@eed3si9n][@eed3si9n]/[@Duhemm][@Duhemm], [lm#90][lm90]
by [@jvican][@jvican]/[@jsuereth][@jsuereth] and [lm#104][lm104] by
[@eed3si9n][@eed3si9n].

Binary format for Zinc’s internal storage

Jorge ([@jvican][@jvican]) from Scala Center contributed a binary format for
Zinc’s internal storage using Google Procol Buffer. The new format provides us
with three main advantages:

1. Backwards and forwards binary compatibility at the analysis format level.
2. Faster (1.5 ~ 2x) serialization/deserialization of the analysis file.
3. Provides a better way to make the analysis file machine-independent.

[zinc#351][zinc351] by [@jvican][@jvican]

Dependency locking

Dependency locking feature is still in progress, but Jorge ([@jvican][@jvican])
from Scala Center has added a number of related features that would should
work together to allow dependency locking.

• Frozen mode to the Ivy-based library management, which makes sure that
the resolution is always intransitive. [lm#100][lm100]

• Adds support to specify a resolver for dependencies. [lm#97][lm97]
• Adds “managed checksums”, which tells Ivy to skip the checksum process.

[lm#111][lm111]

Contributors

Too many people to thank here. See Credits

[@eed3si9n]: https://github.com/eed3si9n [@Duhemm]: https://github.com/Duhemm
[@dwijnand]: https://github.com/dwijnand [@gheine]: https://github.com/gheine
[@gkossakowski]: https://github.com/gkossakowski [@jroper]: https://github.com/jroper
[@jrudolph]: https://github.com/jrudolph [@jsuereth]: https://github.com/jsuereth
[@jvican]: https://github.com/jvican [@Krever]: https://github.com/Krever
[@lukeindykiewicz]: https://github.com/lukeindykiewicz [@muuki88]:

185

Credits.html

https://github.com/muuki88 [@Rogach]: https://github.com/Rogach [@Roma-
nIakovlev]: https://github.com/RomanIakovlev [@smarter]: https://github.com/smarter
[@valydia]: https://github.com/valydia [@xuwei-k]: https://github.com/xuwei-
k [sbt-1-0-roadmap]: https://developer.lightbend.com/blog/2017-04-18-sbt-1-
0-roadmap-and-beta1/ [840]: https://github.com/sbt/sbt/issues/840 [2613]:
https://github.com/sbt/sbt/pull/2613 [1911]: https://github.com/sbt/sbt/issues/1911
[2059]: https://github.com/sbt/sbt/issues/2059 [2662]: https://github.com/sbt/sbt/pull/2662
[3133]: https://github.com/sbt/sbt/pull/3133 [util80]: https://github.com/sbt/util/pull/80
[3198]: https://github.com/sbt/sbt/issues/3198 [lm88]: https://github.com/sbt/librarymanagement/pull/88
[1518]: https://github.com/sbt/sbt/issues/1518 [lm90]: https://github.com/sbt/librarymanagement/pull/90
[lm92]: https://github.com/sbt/librarymanagement/pull/92 [lm98]: https://github.com/sbt/librarymanagement/pull/98
[lm100]: https://github.com/sbt/librarymanagement/pull/100 [lm111]:
https://github.com/sbt/librarymanagement/pull/111 [lm104]: https://github.com/sbt/librarymanagement/pull/104
[lm97]: https://github.com/sbt/librarymanagement/pull/97 [lm124]: https://github.com/sbt/librarymanagement/pull/124
[3202]: https://github.com/sbt/sbt/pull/3202 [zinc295]: https://github.com/sbt/zinc/pull/295
[zinc287]: https://github.com/sbt/zinc/pull/287 [zinc288]: https://github.com/sbt/zinc/pull/288
[zinc304]: https://github.com/sbt/zinc/pull/304 [zinc346]: https://github.com/sbt/zinc/pull/346
[zinc345]: https://github.com/sbt/zinc/pull/345 [zinc347]: https://github.com/sbt/zinc/pull/347
[zinc351]: https://github.com/sbt/zinc/pull/351 [3115]: https://github.com/sbt/sbt/pull/3115
[3182]: https://github.com/sbt/sbt/pull/3182 [3151]: https://github.com/sbt/sbt/pull/3151
[3184]: https://github.com/sbt/sbt/pull/3184 [3216]: https://github.com/sbt/sbt/pull/3216
[3218]: https://github.com/sbt/sbt/pull/3218 [3225]: https://github.com/sbt/sbt/pull/3225
[3233]: https://github.com/sbt/sbt/pull/3233 [io47]: https://github.com/sbt/io/pull/47
[io53]: https://github.com/sbt/io/pull/53 [io38]: https://github.com/sbt/io/pull/38
[util81]: https://github.com/sbt/util/pull/81

Detailed Topics

This part of the documentation has pages documenting particular sbt topics in
detail. Before reading anything in here, you will need the information in the
Getting Started Guide as a foundation.

Other resources include the How to and Developer’s Guide sections in this ref-
erence, and the API Documentation

Using sbt

This part of the documentation has pages documenting particular sbt topics in
detail. Before reading anything in here, you will need the information in the
Getting Started Guide as a foundation.

186

Getting-Started.html
Howto.html
Developers-Guide.html
../api/index.html
Getting-Started.html

Command Line Reference

This page is a relatively complete list of command line options, commands,
and tasks you can use from the sbt interactive prompt or in batch mode. See
Running in the Getting Started Guide for an intro to the basics, while this page
has a lot more detail.

Notes on the command line

• There is a technical distinction in sbt between tasks, which are “inside”
the build definition, and commands, which manipulate the build definition
itself. If you’re interested in creating a command, see Commands. This
specific sbt meaning of “command” means there’s no good general term
for “thing you can type at the sbt prompt”, which may be a setting, task,
or command.

• Some tasks produce useful values. The toString representation of these
values can be shown using show <task> to run the task instead of just
<task>.

• In a multi-project build, execution dependencies and the aggregate setting
control which tasks from which projects are executed. See multi-project
builds.

Project-level tasks

• clean Deletes all generated files (the target directory).
• publishLocal Publishes artifacts (such as jars) to the local Ivy repository

as described in Publishing.
• publish Publishes artifacts (such as jars) to the repository defined by the

publishTo setting, described in Publishing.
• update Resolves and retrieves external dependencies as described in li-

brary dependencies.

Configuration-level tasks

Configuration-level tasks are tasks associated with a configuration. For example,
compile, which is equivalent to Compile/compile, compiles the main source
code (the compile configuration). Test/compile compiles the test source code
(test test configuration). Most tasks for the compile configuration have an
equivalent in the test configuration that can be run using a Test/ prefix.

• compile Compiles the main sources (in the src/main/scala directory).
Test/compile compiles test sources (in the src/test/scala/ directory).

187

Running.html
Commands.html
Multi-Project.html
Multi-Project.html
Library-Dependencies.html
Library-Dependencies.html

• console Starts the Scala interpreter with a classpath including the com-
piled sources, all jars in the lib directory, and managed libraries. To re-
turn to sbt, type :quit, Ctrl+D (Unix), or Ctrl+Z (Windows). Similarly,
Test/console starts the interpreter with the test classes and classpath.

• consoleQuick Starts the Scala interpreter with the project’s compile-time
dependencies on the classpath. Test/consoleQuick uses the test dependen-
cies. This task differs from console in that it does not force compilation
of the current project’s sources.

• consoleProject Enters an interactive session with sbt and the build defi-
nition on the classpath. The build definition and related values are bound
to variables and common packages and values are imported. See the con-
soleProject documentation for more information.

• doc Generates API documentation for Scala source files in src/main/scala
using scaladoc. Test/doc generates API documentation for source files
in src/test/scala.

• package Creates a jar file containing the files in src/main/resources and
the classes compiled from src/main/scala. Test/package creates a jar
containing the files in src/test/resources and the class compiled from
src/test/scala.

• packageDoc Creates a jar file containing API documentation generated
from Scala source files in src/main/scala. Test/packageDoc creates a jar
containing API documentation for test sources files in src/test/scala.

• packageSrc: Creates a jar file containing all main source files and
resources. The packaged paths are relative to src/main/scala and
src/main/resources. Similarly, Test/packageSrc operates on test source
files and resources.

• run <argument>* Runs the main class for the project in the same virtual
machine as sbt. The main class is passed the arguments provided. Please
see Running Project Code for details on the use of System.exit and multi-
threading (including GUIs) in code run by this action. Test/run runs a
main class in the test code.

• runMain <main-class> <argument>* Runs the specified main class for
the project in the same virtual machine as sbt. The main class is passed
the arguments provided. Please see Running Project Code for details on
the use of System.exit and multithreading (including GUIs) in code run
by this action. Test/runMain runs the specified main class in the test
code.

• test Runs all tests detected during test compilation. See Testing for
details.

• testOnly <test>* Runs the tests provided as arguments. * (will be)
interpreted as a wildcard in the test name. See Testing for details.

• testQuick <test>* Runs the tests specified as arguments (or all tests if
no arguments are given) that:

1. have not been run yet OR
2. failed the last time they were run OR
3. had any transitive dependencies recompiled since the last successful

188

Console-Project.html
Console-Project.html
Running-Project-Code.html
Running-Project-Code.html
Testing.html
Testing.html

run * (will be) interpreted as a wildcard in the test name. See Testing
for details.

General commands

• exit or quit End the current interactive session or build. Additionally,
Ctrl+D (Unix) or Ctrl+Z (Windows) will exit the interactive prompt.

• help <command> Displays detailed help for the specified command. If
the command does not exist, help lists detailed help for commands whose
name or description match the argument, which is interpreted as a regular
expression. If no command is provided, displays brief descriptions of the
main commands. Related commands are tasks and settings.

• projects [add|remove <URI>] List all available projects if no arguments
provided or adds/removes the build at the provided URI. (See multi-
project builds for details on multi-project builds.)

• project <project-id> Change the current project to the project with
ID <project-id>. Further operations will be done in the context of the
given project. (See multi-project builds for details on multiple project
builds.)

• ~ <command> Executes the project specified action or method whenever
source files change. See Triggered Execution for details.

• < filename Executes the commands in the given file. Each command
should be on its own line. Empty lines and lines beginning with ‘#’ are
ignored

• + <command> Executes the project specified action or method for all ver-
sions of Scala defined in the crossScalaVersions setting.

• ++ <version|home-directory> <command> Temporarily changes the ver-
sion of Scala building the project and executes the provided command.
<command> is optional. The specified version of Scala is used until the
project is reloaded, settings are modified (such as by the set or session
commands), or ++ is run again. <version> does not need to be listed in
the build definition, but it must be available in a repository. Alternatively,
specify the path to a Scala installation.

• ; A ; B Execute A and if it succeeds, run B. Note that the leading semi-
colon is required.

• eval <Scala-expression> Evaluates the given Scala expression and re-
turns the result and inferred type. This can be used to set system proper-
ties, as a calculator, to fork processes, etc … For example:

> eval System.setProperty("demo", "true")
> eval 1+1

189

Testing.html
Multi-Project.html
Multi-Project.html
Multi-Project.html
Triggered-Execution.html

> eval "ls -l" !

Commands for managing the build definition

• reload [plugins|return] If no argument is specified, reloads the build,
recompiling any build or plugin definitions as necessary. reload plugins
changes the current project to the build definition project (in project/).
This can be useful to directly manipulate the build definition. For example,
running clean on the build definition project will force snapshots to be
updated and the build definition to be recompiled. reload return changes
back to the main project.

• set <setting-expression> Evaluates and applies the given setting def-
inition. The setting applies until sbt is restarted, the build is reloaded,
or the setting is overridden by another set command or removed by the
session command. See .sbt build definition and Inspecting Settings for
details.

• session <command> Manages session settings defined by the set com-
mand. It can persist settings configured at the prompt. See Inspecting
Settings for details.

• inspect <setting-key> Displays information about settings, such as the
value, description, defining scope, dependencies, delegation chain, and re-
lated settings. See Inspecting Settings for details.

Sbt runner arguments

When launching the sbt runner from the OS shell, various system properties or
JVM extra options can be specified to influence its behaviour.

sbt JVM options and system properties

If the JAVA_OPTS and/or SBT_OPTS environment variables are defined when sbt
starts, their content is passed as command line arguments to the JVM running
sbt.

If a file named .jvmopts exists in the current directory, its content is appended
to JAVA_OPTS at sbt startup. Similarly, if .sbtopts and/or /etc/sbt/sbtopts
exist, their content is appended to SBT_OPTS. The default value of JAVA_OPTS
is -Dfile.encoding=UTF8.

You can also specify JVM system properties and command line options directly
as sbt arguments: any -Dkey=val argument will be passed as-is to the JVM,
and any -J-Xfoo will be passed as -Xfoo.

See also sbt --help for more details.

190

Basic-Def.html
Inspecting-Settings.html
Inspecting-Settings.html
Inspecting-Settings.html
Inspecting-Settings.html

sbt JVM heap, permgen, and stack sizes

If you find yourself running out of permgen space or your workstation is low on
memory, adjust the JVM configuration as you would for any java application.

For example a common set of memory-related options is:

export SBT_OPTS="-Xmx2048M -Xss2M"
sbt

Or if you prefer to specify them just for this session:

sbt -J-Xmx2048M -J-Xss2M

Boot directory

sbt is just a bootstrap, the actual meat of sbt, the Scala compiler and standard
library are by default downloaded to the shared directory $HOME/.sbt/boot/.

To change the location of this directory, set the sbt.boot.directory system
property. A relative path will be resolved against the current working directory,
which can be useful if you want to avoid sharing the boot directory between
projects. For example, the following uses the pre-0.11 style of putting the boot
directory in project/boot/:

sbt -Dsbt.boot.directory=project/boot/

Terminal encoding

The character encoding used by your terminal may differ from Java’s de-
fault encoding for your platform. In this case, you will need to specify the
file.encoding=<encoding> system property, which might look like:

export JAVA_OPTS="-Dfile.encoding=Cp1252"
sbt

HTTP/HTTPS/FTP Proxy

On Unix, sbt will pick up any HTTP, HTTPS, or FTP proxy settings from
the standard http_proxy, https_proxy, and ftp_proxy environment variables.
If you are behind a proxy requiring authentication, you need to pass some
supplementary flags at sbt startup. See JVM networking system properties for
more details.

For example:

sbt -Dhttp.proxyUser=username -Dhttp.proxyPassword=mypassword

On Windows, your script should set properties for proxy host, port, and if
applicable, username and password. For example, for HTTP:

191

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/doc-files/net-properties.html

sbt -Dhttp.proxyHost=myproxy -Dhttp.proxyPort=8080 -Dhttp.proxyUser=username -Dhttp.proxyPassword=mypassword

Replace http with https or ftp in the above command line to configure HTTPS
or FTP.

Other system properties

The following system properties can also be passed to sbt:

Property

Values

Default

Meaning

sbt.banner

Boolean

true (in 1.3+)

Show a welcome banner advertising new features.

sbt.boot.directory

Directory

~/.sbt/boot

Path to shared boot directory. You should define sbt.boot.directory explicitly
if you are using sbt in a CI environment and want to cache sbt boot classes
between runs.

sbt.boot.properties

File

Roughly sbt.boot.properties internal to the sbt launcher and specific to the sbt
version.

The path to find the sbt boot properties file. This can be a relative path, relative
to the sbt base directory, the users home directory or the location of the sbt jar
file, or it can be an absolute path or an absolute file URI.

sbt.ci

Boolean

false (unless then env var BUILD_NUMBER is set)

For continuous integration environments. Suppress supershell and color.

sbt.client

Boolean

192

false

sbt.color

String

auto

Supersedes sbt.log.format. To turn on color, use always or true. To turn off
color, use never or false>. To use color if the output is a terminal (not a pipe)
that supports color, use auto.

sbt.coursier

Boolean

true (in 1.3+)

Use coursier to retrieve packages. (See also sbt.ivy.)

sbt.coursier.home

Directory

CoursierDependencyResolution.defaultCacheLocation (in 1.3+)

Location of coursier artifact cache, where the default is defined by Cour-
sier cache resolution logic. You can verify the value with the command
csrCacheDirectory. You should define sbt.coursier.home explicitly if you are
using coursier in a CI environment and want to cache artifacts between runs.

sbt.extraClasspath

Classpath Entries

(jar files or directories) that are added to sbt’s classpath. Note that the entries
are delimited by comma, e.g.: entry1, entry2,... See also resource in the sbt
launcher documentation.

sbt.genbuildprops

Boolean

true

Generate build.properties if missing. If unset, this defers to sbt.skip.version.write.

sbt.global.base

Directory

$HOME/.sbt/1.0

The directory containing global settings and plugins.

xsbt.inc.debug

Boolean

193

false

Extra debugging for the incremental debugger.

sbt.ivy

Boolean

true (in <1.3)

Use ivy to retrieve packages.

sbt.ivy.home

Directory

~/.ivy2

The directory containing the local Ivy repository and artifact cache. You should
define sbt.ivy.home explicitly if you are using sbt in a CI environment and want
to cache ivy artifacts between runs.

sbt.log.noformat

Boolean

false

If true, disable ANSI color codes. Useful on build servers or terminals that do
not support color.

sbt.main.class

String

sbt.xMain

The sbt class to use (alternatives include sbt.ConsoleMain and sbt.ScriptMain).

sbt.offline

Boolean

false

Avoid retrieving classes from repositories.

sbt.override.build.repos

Boolean

false

If true, repositories configured in a build definition are ignored and the reposito-
ries configured for the launcher are used instead. See sbt.repository.config and
the sbt launcher documentation.

sbt.progress

194

String

?

Use always to show progress (“supershell”).

sbt.repository.config

File

~/.sbt/repositories

A file containing the repositories to use for the launcher. The format is the same
as a [repositories] section for a sbt launcher configuration file. This setting is
typically used in conjunction with setting sbt.override.build.repos to true (see
sbt.override.build.repos and the sbt launcher documentation).

sbt.resident.limit

Number

0

The number of scala compilers to keep around. This experimental feature was
intended to improve compilation time. It does not appear to have succeeded
and this flag will probably be removed.

sbt.skip.version.write

Boolean

false

Generate build.properties if missing. See sbt.genbuildprops.

sbt.supershell

Boolean

true if color is enabled

Use supershell (show progress at bottom of shell).

sbt.supershell.sleep

Number

100

Time to wait between updating the supershell progress area.

sbt.task.timings

Boolean

false

Measure the time elapsed for running tasks.

195

sbt.task.timings.omit.paths

Boolean

false

Omit paths when reporting timings.

sbt.task.timings.on.shutdown

Boolean

false

Report timings at JVM shutdown (instead of at task completion).

sbt.task.timings.threshold

String

0

Omit items from timing report if they are below this threshold.

sbt.traces

Boolean

false

Generate Chrome Trace Event Format log for tasks.

sbt.turbo

Boolean

false

Use additional layered class loaders.

sbt.version

Version

1.9.8

sbt version to use, usually taken from project/build.properties.

sbt.watch.mode

String

auto

If polling, check file system periodically for updates.

196

Console Project

Description

The consoleProject task starts the Scala interpreter with access to your project
definition and to sbt. Specifically, the interpreter is started up with these
commands already executed:

import sbt._
import Keys._
import <your-project-definition>._
import currentState._
import extracted._
import cpHelpers._

For example, running external processes with sbt’s process library (to be in-
cluded in the standard library in Scala 2.9):

> "tar -zcvf project-src.tar.gz src" !
> "find project -name *.jar" !
> "cat build.sbt" #| "grep version" #> new File("sbt-version") !
> "grep -r null src" #|| "echo null-free" !
> uri("http://databinder.net/dispatch/About").toURL #> file("About.html") !

consoleProject can be useful for creating and modifying your build in the
same way that the Scala interpreter is normally used to explore writing code.
Note that this gives you raw access to your build. Think about what you pass
to IO.delete, for example.

Accessing settings

To get a particular setting, use the form:

> val value = (<scope> / <key>).eval

Examples

> IO.delete((Compile / classesDirectory).eval)

Show current compile options:

> (Compile / scalacOptions).eval foreach println

Show additionally configured repositories.

> resolvers.eval foreach println

197

Evaluating tasks

To evaluate a task (and its dependencies), use the same form:

> val value = (<scope> / <key>).eval

Examples

Show all repositories, including defaults.

> fullResolvers.eval foreach println

Show the classpaths used for compilation and testing:

> (Compile / fullClasspath).eval.files foreach println
> (Test / fullClasspath).eval.files foreach println

State

The current build State is available as currentState. The contents of
currentState are imported by default and can be used without qualification.

Examples

Show the remaining commands to be executed in the build (more interesting if
you invoke consoleProject like ; consoleProject ; clean ; compile):

> remainingCommands

Show the number of currently registered commands:

> definedCommands.size

Cross-building

Introduction

Different versions of Scala can be binary incompatible, despite maintaining
source compatibility. This page describes how to use sbt to build and pub-
lish your project against multiple versions of Scala and how to use libraries that
have done the same.

For cross building sbt plugins see also Cross building plugins.

198

Build-State.html
Cross-Build-Plugins.html

Publishing conventions

The underlying mechanism used to indicate which version of Scala a library was
compiled against is to append _<scala-binary-version> to the library’s name.
For example, the artifact name dispatch-core_2.12 is used when compiled
against Scala 2.12.0, 2.12.1 or any 2.12.x version. This fairly simple approach
allows interoperability with users of Maven, Ant and other build tools.

For pre-prelease versions of Scala such as 2.13.0-RC1 and for versions prior to
2.10.x, full version is used as the suffix.

The rest of this page describes how sbt handles this for you as part of cross-
building.

Using cross-built libraries

To use a library built against multiple versions of Scala, double the first % in an
inline dependency to be %%. This tells sbt that it should append the current
version of Scala being used to build the library to the dependency’s name. For
example:

libraryDependencies += "net.databinder.dispatch" %% "dispatch-core" % "0.13.3"

A nearly equivalent, manual alternative for a fixed version of Scala is:

libraryDependencies += "net.databinder.dispatch" % "dispatch-core_2.12" % "0.13.3"

Cross building a project using sbt-projectmatrix

No plugin is required to enable cross-building in sbt, although consider using
sbt-projectmatrix that is capable of cross building across Scala versions and
different platforms in parallel.

Cross building a project statefully

Define the versions of Scala to build against in the crossScalaVersions setting.
Versions of Scala 2.10.2 or later are allowed. For example, in a .sbt build
definition:

lazy val scala212 = "2.12.18"
lazy val scala211 = "2.11.12"
lazy val supportedScalaVersions = List(scala212, scala211)

ThisBuild / organization := "com.example"
ThisBuild / version := "0.1.0-SNAPSHOT"
ThisBuild / scalaVersion := scala212

199

https://github.com/sbt/sbt-projectmatrix

lazy val root = (project in file("."))
.aggregate(util, core)
.settings(
// crossScalaVersions must be set to Nil on the aggregating project
crossScalaVersions := Nil,
publish / skip := true

)

lazy val core = (project in file("core"))
.settings(

crossScalaVersions := supportedScalaVersions,
// other settings

)

lazy val util = (project in file("util"))
.settings(

crossScalaVersions := supportedScalaVersions,
// other settings

)

Note: crossScalaVersions must be set to Nil on the root project to avoid
double publishing.

To build against all versions listed in crossScalaVersions, prefix the action to
run with +. For example:

> + test

A typical way to use this feature is to do development on a single Scala version
(no + prefix) and then cross-build (using +) occasionally and when releasing.

Change settings depending on the Scala version

Here’s how we can change some settings depending on the Scala ver-
sion. CrossVersion.partialVersion(scalaVersion.value) returns
Option[(Int, Int)] containing the first two segments of the Scala ver-
sion.

This can be useful for instance if you include a dependency that requires the
macro paradise compiler plugin for Scala 2.12 and the -Ymacro-annotations
compiler option for Scala 2.13.

lazy val core = (project in file("core"))
.settings(

crossScalaVersions := supportedScalaVersions,
libraryDependencies ++= {
CrossVersion.partialVersion(scalaVersion.value) match {

200

case Some((2, n)) if n <= 12 =>
List(compilerPlugin("org.scalamacros" % "paradise" % "2.1.1" cross CrossVersion.full))

case _ => Nil
}

},
Compile / scalacOptions ++= {
CrossVersion.partialVersion(scalaVersion.value) match {

case Some((2, n)) if n <= 12 => Nil
case _ => List("-Ymacro-annotations")

}
},

)

Scala-version specific source directory

In addition to src/main/scala/ directory, src/main/scala-<scala binary
version>/ directory is included as a source directory. For, example if the
current subproject’s scalaVersion is 2.12.10, then src/main/scala-2.12 is
included as a Scala-version specific source.

By setting crossPaths to false, you can opt out of both Scala-version source di-
rectory and the _<scala-binary-version> publishing convention. This might
be useful for non-Scala projects.

Similarly, the build products such as *.class files are written into crossTarget
directory, which by default is target/scala-<scala binary version>.

Cross building with a Java project

A special care must be taken when cross building involves pure Java project.
Let’s say in the following example, network is a Java project, and core is a
Scala project that depends on network.

lazy val scala212 = "2.12.18"
lazy val scala211 = "2.11.12"
lazy val supportedScalaVersions = List(scala212, scala211)

ThisBuild / organization := "com.example"
ThisBuild / version := "0.1.0-SNAPSHOT"
ThisBuild / scalaVersion := scala212

lazy val root = (project in file("."))
.aggregate(network, core)
.settings(
// crossScalaVersions must be set to Nil on the aggregating project
crossScalaVersions := Nil,
publish / skip := false

)

201

// example Java project
lazy val network = (project in file("network"))
.settings(

// set to exactly one Scala version
crossScalaVersions := List(scala212),
crossPaths := false,
autoScalaLibrary := false,
// other settings

)

lazy val core = (project in file("core"))
.dependsOn(network)
.settings(
crossScalaVersions := supportedScalaVersions,
// other settings

)

1. crossScalaVersions must be set to Nil on the aggregating projects such
as the root.

2. Java subprojects should set crossPaths to false, which turns off the
_<scala-binary-version> publishing convention and the Scala-version
specific source directory.

3. Java subprojects should have exactly one Scala version in crossScalaVersions
to avoid double publishing, typically scala212.

4. Scala subprojects can have multiple Scala versions in crossScalaVersions,
but must avoid aggregating Java subprojects.

Switching Scala version

You can use ++ <version> [command] to temporarily switch the Scala version
currently being used to build the subprojects given that <version> is listed in
their crossScalaVersions.

For example:

> ++ 2.12.18
[info] Setting version to 2.12.18
> ++ 2.11.12
[info] Setting version to 2.11.12
> compile

<version> should be either a version for Scala published to a repository or the
path to a Scala home directory, as in ++ /path/to/scala/home. See Command
Line Reference for details.

When a [command] is passed in to ++, it will execute the command on the
subprojects that supports the given <version>.

202

Command-Line-Reference.html
Command-Line-Reference.html

For example:

> ++ 2.11.12 -v test
[info] Setting Scala version to 2.11.12 on 1 projects.
[info] Switching Scala version on:
[info] core (2.12.18, 2.11.12)
[info] Excluding projects:
[info] * root ()
[info] network (2.12.18)
[info] Reapplying settings...
[info] Set current project to core (in build file:/Users/xxx/hello/)

Sometimes you might want to force the Scala version switch regardless of the
crossScalaVersions values. You can use ++ <version>! with exclamation
mark for that.

For example:

> ++ 2.13.0-M5! -v
[info] Forcing Scala version to 2.13.0-M5 on all projects.
[info] Switching Scala version on:
[info] * root ()
[info] core (2.12.18, 2.11.12)
[info] network (2.12.18)

Cross publishing

The ultimate purpose of + is to cross-publish your project. That is, by doing:

> + publishSigned

you make your project available to users for different versions of Scala. See
Publishing for more details on publishing your project.

In order to make this process as quick as possible, different output and managed
dependency directories are used for different versions of Scala. For example,
when building against Scala 2.12.7,

• ./target/ becomes ./target/scala_2.12/
• ./lib_managed/ becomes ./lib_managed/scala_2.12/

Packaged jars, wars, and other artifacts have _<scala-version> appended to
the normal artifact ID as mentioned in the Publishing Conventions section
above.

This means that the outputs of each build against each version of Scala are
independent of the others. sbt will resolve your dependencies for each version
separately. This way, for example, you get the version of Dispatch compiled
against 2.11 for your 2.11.x build, the version compiled against 2.12 for your
2.12.x builds, and so on.

203

Publishing.html

Overriding the publishing convention

crossVersion setting can override the publishing convention:

• CrossVersion.disabled (no suffix)
• CrossVersion.binary (_<scala-binary-version>)
• CrossVersion.full (_<scala-version>)

The default is either CrossVersion.binary or CrossVersion.disabled de-
pending on the value of crossPaths.

Because (unlike Scala library) Scala compiler is not forward compatible among
the patch releases, compiler plugins should use CrossVersion.full.

Scala 3 specific cross-versions

In a Scala 3 project you can use Scala 2.13 libraries:

("a" % "b" % "1.0") cross CrossVersion.for3Use2_13

This is equivalent to using %% except it resolves the _2.13 variant of the library
when scalaVersion is 3.x.y.

Conversely we have CrossVersion.for2_13Use3 to use the _3 variant of the
library when scalaVersion is 2.13.x:

("a" % "b" % "1.0") cross CrossVersion.for2_13Use3

Warning for library authors: It is generally not safe to publish a Scala 3
library that depends on a Scala 2.13 library or vice-versa. The reason is to
prevent your end users from having two versions x_2.13 and x_3 of the same x
library in their classpath.

More about using cross-built libraries

You can have fine-grained control over the behavior for different Scala versions
by using the cross method on ModuleID These are equivalent:

"a" % "b" % "1.0"
("a" % "b" % "1.0").cross(CrossVersion.disabled)

These are equivalent:

"a" %% "b" % "1.0"
("a" % "b" % "1.0").cross(CrossVersion.binary)

This overrides the defaults to always use the full Scala version instead of the
binary Scala version:

("a" % "b" % "1.0").cross(CrossVersion.full)

204

CrossVersion.patch sits between CrossVersion.binary and CrossVersion.full
in that it strips off any trailing -bin-... suffix which is used to distinguish
variant but binary compatible Scala toolchain builds.

("a" % "b" % "1.0").cross(CrossVersion.patch)

CrossVersion.constant fixes a constant value:

("a" % "b" % "1.0") cross CrossVersion.constant("2.9.1")

It is equivalent to:

"a" % "b_2.9.1" % "1.0"

A constant cross version is mainly used when cross-building and a dependency
isn’t available for all Scala versions or it uses a different convention than the
default.

("a" % "b" % "1.0") cross CrossVersion.constant {
scalaVersion.value match {

case "2.9.1" => "2.9.0"
case x => x

}
}

Note about sbt-release

sbt-release implemented cross building support by copy-pasting sbt 0.13’s +
implementation, so at least as of sbt-release 1.0.10, it does not work correctly
with sbt 1.x’s cross building, which was prototyped originally as sbt-doge.

To cross publish using sbt-release with sbt 1.x, use the following workaround:

ThisBuild / organization := "com.example"
ThisBuild / version := "0.1.0-SNAPSHOT"
ThisBuild / scalaVersion := scala212

import ReleaseTransformations._
lazy val root = (project in file("."))
.aggregate(util, core)
.settings(
// crossScalaVersions must be set to Nil on the aggregating project
crossScalaVersions := Nil,
publish / skip := true,

// don't use sbt-release's cross facility
releaseCrossBuild := false,
releaseProcess := Seq[ReleaseStep](
checkSnapshotDependencies,
inquireVersions,

205

runClean,
releaseStepCommandAndRemaining("+test"),
setReleaseVersion,
commitReleaseVersion,
tagRelease,
releaseStepCommandAndRemaining("+publishSigned"),
setNextVersion,
commitNextVersion,
pushChanges

)
)

This will then use the real cross (+) implementation for testing and publishing.
Credit for this technique goes to James Roper at playframework#4520 and later
inventing releaseStepCommandAndRemaining.

Interacting with the Configuration System

Central to sbt is the new configuration system, which is designed to enable exten-
sive customization. The goal of this page is to explain the general model behind
the configuration system and how to work with it. The Getting Started Guide
(see .sbt files) describes how to define settings; this page describes interacting
with them and exploring them at the command line.

Selecting commands, tasks, and settings

A fully-qualified reference to a setting or task looks like:

{<build-uri>}<project-id>/config:intask::key

This “scoped key” reference is used by commands like last and inspect and
when selecting a task to run. Only key is usually required by the parser; the
remaining optional pieces select the scope. These optional pieces are individ-
ually referred to as scope axes. In the above description, {<build-uri>} and
<project-id>/ specify the project axis, config: is the configuration axis, and
intask is the task-specific axis. Unspecified components are taken to be the
current project (project axis) or auto-detected (configuration and task axes).
An asterisk (*) is used to explicitly refer to the Global context, as in */*:key.

Selecting the configuration

In the case of an unspecified configuration (that is, when the config: part
is omitted), if the key is defined in Global, that is selected. Otherwise, the
first configuration defining the key is selected, where order is determined by

206

https://github.com/playframework/playframework/pull/4520
Basic-Def.html

the project definition’s configurations member. By default, this ordering is
compile, test, ...

For example, the following are equivalent when run in a project root in the
build in /home/user/sample/:

> compile
> Compile/compile
> root/compile
> root/Compile/compile
> {file:/home/user/sample/}root/Compile/compile

As another example, run by itself refers to Compile/run because there is no
global run task and the first configuration searched, compile, defines a run.
Therefore, to reference the run task for the Test configuration, the configuration
axis must be specified like Test/run. Some other examples that require the
explicit Test/ axis:

> Test/consoleQuick
> Test/console
> Test/doc
> Test/package

Task-specific Settings

Some settings are defined per-task. This is used when there are several related
tasks, such as package, packageSrc, and packageDoc, in the same configuration
(such as compile or test). For package tasks, their settings are the files to
package, the options to use, and the output file to produce. Each package task
should be able to have different values for these settings.

This is done with the task axis, which selects the task to apply a setting to. For
example, the following prints the output jar for the different package tasks.

> package::artifactPath
[info] /home/user/sample/target/scala-2.8.1.final/demo_2.8.1-0.1.jar

> packageSrc::artifactPath
[info] /home/user/sample/target/scala-2.8.1.final/demo_2.8.1-0.1-src.jar

> packageDoc::artifactPath
[info] /home/user/sample/target/scala-2.8.1.final/demo_2.8.1-0.1-doc.jar

> test:package::artifactPath
[info] /home/user/sample/target/scala-2.8.1.final/root_2.8.1-0.1-test.jar

Note that a single colon : follows a configuration axis and a double colon ::
follows a task axis.

207

Discovering Settings and Tasks

This section discusses the inspect command, which is useful for exploring re-
lationships between settings. It can be used to determine which setting should
be modified in order to affect another setting, for example.

Value and Provided By

The first piece of information provided by inspect is the type of a task or the
value and type of a setting. The following section of output is labeled “Provided
by”. This shows the actual scope where the setting is defined. For example,

> inspect libraryDependencies
[info] Setting: scala.collection.Seq[sbt.ModuleID] = List(org.scalaz:scalaz-core:6.0-SNAPSHOT, org.scala-tools.testing:scalacheck:1.8:test)
[info] Provided by:
[info] {file:/home/user/sample/}root/*:libraryDependencies
...

This shows that libraryDependencies has been defined on the current project
({file:/home/user/sample/}root) in the global configuration (*:). For a task
like update, the output looks like:

> inspect update
[info] Task: sbt.UpdateReport
[info] Provided by:
[info] {file:/home/user/sample/}root/*:update
...

Related Settings

The “Related” section of inspect output lists all of the definitions of a key. For
example,

> inspect compile
...
[info] Related:
[info] test:compile

This shows that in addition to the requested Compile/compile task, there is
also a Test/compile task.

Dependencies

Forward dependencies show the other settings (or tasks) used to define a setting
(or task). Reverse dependencies go the other direction, showing what uses a
given setting. inspect provides this information based on either the requested
dependencies or the actual dependencies. Requested dependencies are those
that a setting directly specifies. Actual settings are what those dependencies

208

get resolved to. This distinction is explained in more detail in the following
sections.

Requested Dependencies

As an example, we’ll look at console:

> inspect console
...
[info] Dependencies:
[info] Compile / console / initialCommands
[info] Compile / console / streams
[info] Compile / console / compilers
[info] Compile / console / cleanupCommands
[info] Compile / console / taskTemporaryDirectory
[info] Compile / console / scalaInstance
[info] Compile / console / scalacOptions
[info] Compile / console / fullClasspath

...

This shows the inputs to the console task. We can see that it gets its class-
path and options from Compile / console / fullClasspath and Compile /
console / scalacOptions. The information provided by the inspect com-
mand can thus assist in finding the right setting to change. The convention
for keys, like console and fullClasspath, is that the Scala identifier is camel
case, while the String representation is lowercase and separated by dashes. The
Scala identifier for a configuration is uppercase to distinguish it from tasks like
compile and test. For example, we can infer from the previous example how
to add code to be run when the Scala interpreter starts up:

> set Compile / console / initialCommands := "import mypackage._"
> console
...
import mypackage._
...

inspect showed that console used the setting Compile / console /
initialCommands. Translating the initialCommands string to the Scala
identifier gives us initialCommands. compile indicates that this is for the
main sources. console / indicates that the setting is specific to console.
Because of this, we can set the initial commands on the console task without
affecting the consoleQuick task, for example.

Actual Dependencies

209

inspect actual <scoped-key> shows the actual dependency used. This is
useful because delegation means that the dependency can come from a scope
other than the requested one. Using inspect actual, we see exactly which
scope is providing a value for a setting. Combining inspect actual with plain
inspect, we can see the range of scopes that will affect a setting. Returning to
the example in Requested Dependencies,

> inspect actual console
...
[info] Dependencies:
[info] Compile / console / streams
[info] Global / taskTemporaryDirectory
[info] scalaInstance
[info] Compile / scalacOptions
[info] Global / initialCommands
[info] Global / cleanupCommands
[info] Compile / fullClasspath
[info] console / compilers
...

For initialCommands, we see that it comes from the global scope (Global).
Combining this with the relevant output from inspect console:

Compile / console / initialCommands

we know that we can set initialCommands as generally as the global scope,
as specific as the current project’s console task scope, or anything in between.
This means that we can, for example, set initialCommands for the whole project
and will affect console:

> set initialCommands := "import mypackage._"
...

The reason we might want to set it here this is that other console tasks will use
this value now. We can see which ones use our new setting by looking at the
reverse dependencies output of inspect actual:

> inspect actual initialCommands
...
[info] Reverse dependencies:
[info] Compile / console
[info] Test / console
[info] consoleProject
[info] Test / consoleQuick
[info] Compile / consoleQuick
...

We now know that by setting initialCommands on the whole project, we affect
all console tasks in all configurations in that project. If we didn’t want the

210

initial commands to apply for consoleProject, which doesn’t have our project’s
classpath available, we could use the more specific task axis:

> set console / initialCommands := "import mypackage._"
> set consoleQuick / initialCommands := "import mypackage._"`

or configuration axis:

> set Compile/ initialCommands := "import mypackage._"
> set Test / initialCommands := "import mypackage._"

The next part describes the Delegates section, which shows the chain of delega-
tion for scopes.

Delegates

A setting has a key and a scope. A request for a key in a scope A may be
delegated to another scope if A doesn’t define a value for the key. The delegation
chain is well-defined and is displayed in the Delegates section of the inspect
command. The Delegates section shows the order in which scopes are searched
when a value is not defined for the requested key.

As an example, consider the initial commands for console again:

> inspect console/initialCommands
...
[info] Delegates:
[info] console / initialCommands
[info] initialCommands
[info] ThisBuild / console / initialCommands
[info] ThisBuild / initialCommands
[info] Zero / console / initialCommands
[info] Global / initialCommands
...

This means that if there is no value specifically for console/initialCommands,
the scopes listed under Delegates will be searched in order until a defined value
is found.

Triggered Execution

sbt provides the ability to monitor the input files for a particular task and repeat
the task when changes to those files occur.

Some example usages are described below:

211

Compile

A common use-case is continuous compilation. The following commands will
make sbt watch for source changes in the Test and Compile (default) configura-
tions respectively and re-run the compile command.

> ~ Test / compile

> ~ compile

Note that because Test / compile depends on Compile / compile, source
changes in the main source directory will trigger recompilation of the test
sources.

Testing

Triggered execution is often used when developing in a test driven development
(TDD) style. The following command will monitor changes to both the main
and test source sources for the build and re-run only the tests that reference
classes that have been re-compiled since the last test run.

> ~ testQuick

It is also possible to re-run only a particular test if its dependencies have
changed.

> ~ testQuick foo.BarTest

It is possible to always re-run a test when source changes are detected regardless
of whether the test depends on any of the updated source files.

> ~ testOnly foo.BarTest

To run all of the tests in the project when any sources change, use

> ~test

Running Multiple Commands

sbt supports watching multiple, semicolon separated, commands. For example,
the following command will monitor for source file changes and run clean and
test:

> ~ clean; test

Build sources

If the build is configured to automatically reload when build source changes are
made by setting Global / onChangedBuildSource := ReloadOnSourceChanges,

212

then sbt will monitor the build sources (i.e. *.sbt and *.{java,scala} files
in the project directory). When build source changes are detected, the build
will be reloaded and sbt will re-enter triggered execution mode when the reload
completes.

The following snippet can be added as a global setting to ~/.sbt/1.0/config.sbt
to enable ReloadOnSourceChanges for all sbt 1.3+ builds without breaking
earlier versions:

Def.settings {
try {
val value = Class.forName("sbt.nio.Keys$ReloadOnSourceChanges$").getDeclaredField("MODULE$").get(null)
val clazz = Class.forName("sbt.nio.Keys$WatchBuildSourceOption")
val manifest = new scala.reflect.Manifest[AnyRef]{ def runtimeClass = clazz }
Seq(
Global / SettingKey[AnyRef]("onChangedBuildSource")(manifest, sbt.util.NoJsonWriter()) := value

)
} catch {
case e: Throwable =>
Nil

}
}

Clearing the screen

sbt can clear the console screen before it evaluates the task or after it triggers
an event. To configure sbt to clear the screen after an event is triggered add

ThisBuild / watchTriggeredMessage := Watch.clearScreenOnTrigger

to the build settings. To clear the screen before running the task, add

ThisBuild / watchBeforeCommand := Watch.clearScreen

to the build settings.

Configuration

The behavior of triggered execution can be configured via a number of settings.

• watchTriggers: Seq[Glob] adds search queries for files that should task
trigger evaluation but that the task does not directly depend on. For
example, if the project build.sbt file contains foo / watchTriggers +=
baseDirectory.value.toGlob / "*.txt", then any modifications to
files ending with the txt extension will cause the foo command to trigger
when in triggered execution mode.

213

../api/sbt/Global-Settings.html

• watchTriggeredMessage: (Int, Path, Seq[String]) => Option[String]
sets the message that is displayed when a file modification triggers a new
build. Its input parameters are the current watch iteration count, the file
that triggered the build and the command(s) that are going to be run.
By default, it prints a message indicating what file triggered the build
and what commands its going to run. No message is printed when the
function returns None. To clear the screen before printing the message,
just add Watch.clearScreen() inside of the task definition. This will
ensure that the screen is cleared and that the message, if any is defined,
will be printed after the screen clearing.

• watchInputOptions: Seq[Watch.InputOption] allows the build to over-
ride the default watch options. For example, to add the ability to reload
the build by typing the ‘l’ key, add ThisBuild / watchInputOptions +=
Watch.InputOption('l', "reload", Watch.Reload) to the build.sbt
file. When using the default watchStartMessage, this will also add the
option to the list displayed by the ‘?’ option.

• watchBeforeCommand: () => Unit provides a callback to run before
evaluating the task. It can be used to clear the console screen by
adding ThisBuild / watchBeforeCommand := Watch.clearScreen to
the project build.sbt file. By default it is no-op.

• watchLogLevel sets the logging level of the file monitoring system. This
can be useful if the triggered execution is not being evaluated when source
files or modified or if is unexpectedly triggering due to modifications to
files that should not be monitored.

• watchInputParser: Parser[Watch.Action] changes how the monitor
handles input events. For example, setting watchInputParser := 'l'
^^^ Watch.Reload | '\r' ^^^ new Watch.Run("") will make it so that
typing the ‘l’ key will reload the build and typing a newline will re-
turn to the shell. By default this is automatically derived from the
watchInputOptions.

• watchStartMessage: (Int, ProjectRef, Seq[String]) => Option[String]
sets the banner that is printed while the watch process is waiting for
file or input events. The inputs are the iteration count, the current
project and the commands to run. The default message includes in-
structions for terminating the watch or displaying all available options.
This banner is only displayed if watchOnIteration logs the result of
watchStartMessage.

• watchOnIteration: (Int, ProjectRef, Seq[String]) => Watch.Action
a function that is evaluated before waiting for source or input events.
It can be used to terminate the watch early if, for example, a certain
number of iterations have been reached. By default, it just logs the result
of watchStartMessage.

214

• watchForceTriggerOnAnyChange: Boolean configures whether or not
the contents of a source file must change in order to trigger a build. The
default value is false.

• watchPersistFileStamps: Boolean toggles whether or not sbt will per-
sist the file hashes computed for source files across multiple task evaluation
runs. This can improve performance for projects with many source files.
Because the file hashes are cached, it is possible for the evaluated task to
read an invalid hash if many source files are being concurrently modified.
The default value is false.

• watchAntiEntropy: FiniteDuration controls the time that must elapse
before a build is re-triggered by the same file that previously triggered the
build. This is intended to prevent spurious builds that can occur when a
file is modified in short bursts. The default value is 500ms.

Script mode

sbt has an alternative entry points that may be used to:

• Compile and execute a Scala script containing dependency declarations or
other sbt settings

This entry point should be considered experimental. A notable disadvantage of
these approaches is the startup time involved.

sbt Script runner

The script runner can run a standard Scala script, but with the additional ability
to configure sbt. sbt settings may be embedded in the script in a comment block
that opens with /***.

Example

Copy the following script and make it executable. You may need to adjust the
first line depending on your script name and operating system. When run, the
example should retrieve Scala, the required dependencies, compile the script,
and run it directly. For example, if you name it script.scala, you would do
on Unix:

chmod u+x script.scala
./script.scala

#!/usr/bin/env sbt -Dsbt.version=1.6.1 -Dsbt.main.class=sbt.ScriptMain -error

/***
ThisBuild / scalaVersion := "2.13.12"

215

libraryDependencies += "org.scala-sbt" %% "io" % "1.6.0"
*/

println("hello")

This prints out hello. If you’re used to using IO from sbt, we can use that do
basic file operations, like reading a text file.

#!/usr/bin/env sbt -Dsbt.version=1.6.1 -Dsbt.main.class=sbt.ScriptMain -error

/***
ThisBuild / scalaVersion := "2.13.12"
libraryDependencies += "org.scala-sbt" %% "io" % "1.6.0"
*/

import sbt.io.IO
import sbt.io.Path._
import sbt.io.syntax._
import java.io.File
import java.net.URI
import sys.process._

def file(s: String): File = new File(s)
def uri(s: String): URI = new URI(s)

def processFile(f: File): Unit = {
val lines = IO.readLines(f)
lines foreach { line =>
println(line.toUpperCase)

}
}

args.toList match {
case Nil => sys.error("usage: ./script.scala <file>...")
case xs => xs foreach { x => processFile(file(x)) }

}

This script will take file names as argument and print them out in all upper
case.

$./script.scala script.scala
#!/USR/BIN/ENV SBT -DSBT.MAIN.CLASS=SBT.SCRIPTMAIN -ERROR
....

216

sbt Server

sbt server is a feature that is newly introduced in sbt 1.x, and it’s still a work
in progress. You might at first imagine server to be something that runs on
remote servers, and does great things, but for now sbt server is not that.

Actually, sbt server just adds network access to sbt’s shell command so, in
addition to accepting input from the terminal, server also to accepts input from
the network. This allows multiple clients to connect to a single session of sbt.
The primary use case we have in mind for the client is tooling integration such
as editors and IDEs. See IDE Integration page.

Configuration

There are several settings that can be used to configure the server. The following
lists some of these and their default values. One may change the settings either
per project or by setting values in ~/.sbt/1.0/global.sbt.

// If set to a defined value, sbt server will exit if it goes at least the
// specified duration without receiving any commands.
Global / serverIdleTimeout := Some(new FiniteDuration(5, TimeUnit.MINUTES))

Language Server Protocol 3.0

The wire protocol we use is Language Server Protocol 3.0 (LSP), which in turn
is based on JSON-RPC.

The base protocol consists of a header and a content part (comparable to HTTP).
The header and content part are separated by a \r\n.

Currently the following header fields are supported:

• Content-Length: The length of the content part in bytes. If you don’t
provide this header, we’ll read until the end of the line.

• Content-Type: Must be set to application/vscode-jsonrpc;
charset=utf-8 or omit it.

Here is an example:

Content-Type: application/vscode-jsonrpc; charset=utf-8\r\n
Content-Length: ...\r\n
\r\n
{
"jsonrpc": "2.0",
"id": 1,
"method": "textDocument/didSave",
"params": {
...

217

IDE.html
https://github.com/Microsoft/language-server-protocol/blob/master/protocol.md
https://www.jsonrpc.org/specification

}
}

A JSON-RPC request consists of an id number, a method name, and an optional
params object. So all LSP requests are pairs of method name and params JSON.

An example response to the JSON-RPC request is:

Content-Type: application/vscode-jsonrpc; charset=utf-8\r\n
Content-Length: ...\r\n
\r\n
{
"jsonrpc": "2.0",
"id": 1,
"result": {
...

}
}

Or the server might return an error response:

Content-Type: application/vscode-jsonrpc; charset=utf-8\r\n
Content-Length: ...\r\n
\r\n
{
"jsonrpc": "2.0",
"id": 1,
"error": {
"code": -32602,
"message": "some error message"

}
}

In addition to the responses, the server might also send events (“notifications”
in LSP terminology).

Content-Type: application/vscode-jsonrpc; charset=utf-8\r\n
Content-Length: ...\r\n
\r\n
{
"jsonrpc": "2.0",
"method": "textDocument/publishDiagnostics",
"params": {
...

}
}

218

Server modes

Sbt server can run in two modes, which differ in wire protocol and initialization.
The default mode since sbt 1.1.x is domain socket mode, which uses either
Unix domain sockets (on Unix) or named pipes (on Windows) for data transfer
between server and client. In addition, there is a TCP mode, which uses TCP
for data transfer.

The mode which sbt server starts in is governed by the key serverConnectionType,
which can be set to ConnectionType.Local for domain socket/named pipe
mode, or to ConnectionType.Tcp for TCP mode.

Server discovery and authentication

To discover a running server, we use a port file.

By default, sbt server will be running when a sbt shell session is active. When
the server is up, it will create a file called the port file. The port file is located
at ./project/target/active.json. The port file will look different depending
on whether the server is running in TCP mode or domain socket/named pipe
mode. They will look something like this:

In domain socket/named pipe mode, on Unix:

{"uri":"local:///Users/someone/.sbt/1.0/server/0845deda85cb41abdb9f/sock"}

where the uri key will contain a string starting with local:// followed by the
socket address sbt server is listening on.

In domain socket/named pipe mode, on Windows, it will look something like

{"uri":"local:sbt-server-0845deda85cb41abdb9f"}

where the uri key will contain a string starting with local: followed by the
name of the named pipe. In this example, the path of the named pipe will be
\.\pipe\sbt-server-0845deda85cb41abdb9f.

In TCP mode it will look something like the following:

{
"uri":"tcp://127.0.0.1:5010",
"tokenfilePath":"/Users/xxx/.sbt/1.0/server/0845deda85cb41abdb9f/token.json",
"tokenfileUri":"file:/Users/xxx/.sbt/1.0/server/0845deda85cb41abdb9f/token.json"

}

In this case, the uri key will hold a TCP uri with the address the server
is listening on. In this mode, the port file will contain two additional keys,
tokenfilePath and tokenfileUri. These point to the location of a token file.

The location of the token file will not change between runs. It’s contents will
look something like this:

219

{
"uri":"tcp://127.0.0.1:5010",
"token":"12345678901234567890123456789012345678"

}

The uri field is the same, and the token field contains a 128-bits non-negative
integer.

Initialize request

To initiate communication with sbt server, the client (such as a tool like VS
Code) must first send an initialize request. This means that the client
must send a request with method set to “initialize” and the InitializeParams
datatype as the params field.

If the server is running in TCP mode, to authenticate yourself, you must pass
in the token in initializationOptions as follows:

type InitializationOptionsParams {
token: String!

}

On telnet it would look as follows:

$ telnet 127.0.0.1 5010
Content-Type: application/vscode-jsonrpc; charset=utf-8
Content-Length: 149

{ "jsonrpc": "2.0", "id": 1, "method": "initialize", "params": { "initializationOptions": { "token": "84046191245433876643612047032303751629" } } }

If the server is running in named pipe mode, no token is needed, and the
initializationOptions should be the empty object {}.

On Unix, using netcat, sending the initialize message in domain socket/named
pipe mode will look something like this:

$ nc -U /Users/foo/.sbt/1.0/server/0845deda85cb41abcdef/sock
Content-Length: 99^M
^M
{ "jsonrpc": "2.0", "id": 1, "method": "initialize", "params": { "initializationOptions": { } } }^M

Connections to the server when it’s running in named pipe mode are exclusive
to the first process that connects to the socket or pipe.

After sbt receives the request, it will send an initialized event.

220

https://github.com/Microsoft/language-server-protocol/blob/master/protocol.md#initialize
https://github.com/Microsoft/language-server-protocol/blob/master/protocol.md#initialized

textDocument/publishDiagnostics event

The compiler warnings and errors are sent to the client using the
textDocument/publishDiagnostics event.

• method: textDocument/publishDiagnostics
• params: PublishDiagnosticsParams

Here’s an example output (with JSON-RPC headers omitted):

{
"jsonrpc": "2.0",
"method": "textDocument/publishDiagnostics",
"params": {
"uri": "file:/Users/xxx/work/hellotest/Hello.scala",
"diagnostics": [
{
"range": {
"start": {
"line": 2,
"character": 0

},
"end": {
"line": 2,
"character": 1

}
},
"severity": 1,
"source": "sbt",
"message": "')' expected but '}' found."

}
]

}
}

textDocument/didSave event

As of sbt 1.1.0, sbt will execute the compile task upon receiving a
textDocument/didSave notification. This behavior is subject to change.

sbt/exec request

A sbt/exec request emulates the user typing into the shell.

• method: sbt/exec
• params:

221

https://github.com/Microsoft/language-server-protocol/blob/master/protocol.md#publishdiagnostics-notification

type SbtExecParams {
commandLine: String!

}

On telnet it would look as follows:

Content-Length: 91

{ "jsonrpc": "2.0", "id": 2, "method": "sbt/exec", "params": { "commandLine": "clean" } }

Note that there might be other commands running on the build, so in that case
the request will be queued up.

sbt/setting request

A sbt/setting request can be used to query settings.

• method: sbt/setting
• params:

type SettingQuery {
setting: String!

}

On telnet it would look as follows:

Content-Length: 102

{ "jsonrpc": "2.0", "id": 3, "method": "sbt/setting", "params": { "setting": "root/scalaVersion" } }
Content-Length: 87
Content-Type: application/vscode-jsonrpc; charset=utf-8

{"jsonrpc":"2.0","id":"3","result":{"value":"2.12.2","contentType":"java.lang.String"}}

Unlike the command execution, this will respond immediately.

sbt/completion request

(sbt 1.3.0+)

A sbt/completion request is used to emulate tab completions for sbt shell.

• method: sbt/completion
• params:

type CompletionParams {
query: String!

}

On telnet it would look as follows:

222

Content-Length: 100

{ "jsonrpc": "2.0", "id": 15, "method": "sbt/completion", "params": { "query": "testOnly org." } }
Content-Length: 79
Content-Type: application/vscode-jsonrpc; charset=utf-8

{"jsonrpc":"2.0","id":15,"result":{"items":["testOnly org.sbt.ExampleSpec"]}}

This will respond immediately based on the last available state of sbt.

sbt/cancelRequest

(sbt 1.3.0+)

A sbt/cancelRequest request can be used to terminate the execution of an
on-going task.

• method: sbt/cancelRequest
• params:

type CancelRequestParams {
id: String!

}

On telnet it would look as follows (assuming a task with Id “foo” is currently
running):

Content-Length: 93

{ "jsonrpc": "2.0", "id": "bar", "method": "sbt/cancelRequest", "params": { "id": "foo" } }
Content-Length: 126
Content-Type: application/vscode-jsonrpc; charset=utf-8

{"jsonrpc":"2.0","id":"bar","result":{"status":"Task cancelled","channelName":"network-1","execId":"foo","commandQueue":[]}}

This will respond back with the result of the action.

Understanding Incremental Recompilation

Compiling Scala code with scalac is slow, but sbt often makes it faster. By
understanding how, you can even understand how to make compilation even
faster. Modifying source files with many dependencies might require recompiling
only those source files (which might take 5 seconds for instance) instead of all
the dependencies (which might take 2 minutes for instance). Often you can
control which will be your case and make development faster with a few coding
practices.

223

Improving the Scala compilation performance is a major goal of sbt, and thus
the speedups it gives are one of the major motivations to use it. A significant
portion of sbt’s sources and development efforts deal with strategies for speeding
up compilation.

To reduce compile times, sbt uses two strategies:

Reduce the overhead for restarting Scalac

Implement smart and transparent strategies for incremental recompilation, so
that only modified files and the needed dependencies are recompiled.

sbt always runs Scalac in the same virtual machine. If one compiles source code
using sbt, keeps sbt alive, modifies source code and triggers a new compilation,
this compilation will be faster because (part of) Scalac will have already been
JIT-compiled.

Reduce the number of recompiled source.

When a source file A.scala is modified, sbt goes to great effort to recompile other
source files depending on A.scala only if required - that is, only if the interface of
A.scala was modified. With other build management tools (especially for Java,
like ant), when a developer changes a source file in a non-binary-compatible way,
she needs to manually ensure that dependencies are also recompiled - often by
manually running the clean command to remove existing compilation output;
otherwise compilation might succeed even when dependent class files might need
to be recompiled. What is worse, the change to one source might make depen-
dencies incorrect, but this is not discovered automatically: One might get a
compilation success with incorrect source code. Since Scala compile times are
so high, running clean is particularly undesirable.

By organizing your source code appropriately, you can minimize the amount of
code affected by a change. sbt cannot determine precisely which dependencies
have to be recompiled; the goal is to compute a conservative approximation, so
that whenever a file must be recompiled, it will, even though we might recompile
extra files.

sbt heuristics

sbt tracks source dependencies at the granularity of source files. For each source
file, sbt tracks files which depend on it directly; if the interface of classes,
objects or traits in a file changes, all files dependent on that source must be
recompiled. At the moment sbt uses the following algorithm to calculate source
files dependent on a given source file:

• dependencies introduced through inheritance are included transitively; a
dependency is introduced through inheritance if a class/trait in one file
inherits from a trait/class in another file

224

• all other direct dependencies are considered by name hashing optimization;
other dependencies are also called “member reference” dependencies be-
cause they are introduced by referring to a member (class, method, type,
etc.) defined in some other source file

• name hashing optimization considers all member reference dependencies
in context of interface changes of a given source file; it tries to prune
irrelevant dependencies by looking at names of members that got modified
and checking if dependent source files mention those names

The name hashing optimization is enabled by default since sbt 0.13.6.

How to take advantage of sbt heuristics

The heuristics used by sbt imply the following user-visible consequences, which
determine whether a change to a class affects other classes.

1. Adding, removing, modifying private methods does not require recompi-
lation of client classes. Therefore, suppose you add a method to a class
with a lot of dependencies, and that this method is only used in the declar-
ing class; marking it private will prevent recompilation of clients. How-
ever, this only applies to methods which are not accessible to other classes,
hence methods marked with private or private[this]; methods which are
private to a package, marked with private[name], are part of the API.

2. Modifying the interface of a non-private method triggers name hashing
optimization

3. Modifying one class does require recompiling dependencies of other classes
defined in the same file (unlike said in a previous version of this guide).
Hence separating different classes in different source files might reduce
recompilations.

4. Changing the implementation of a method should not affect its clients,
unless the return type is inferred, and the new implementation leads to a
slightly different type being inferred. Hence, annotating the return type of
a non-private method explicitly, if it is more general than the type actually
returned, can reduce the code to be recompiled when the implementation
of such a method changes. (Explicitly annotating return types of a public
API is a good practice in general.)

All the above discussion about methods also applies to fields and members in
general; similarly, references to classes also extend to objects and traits.

Implementation of incremental recompilation

This sections goes into details of incremental compiler implementation. It’s
starts with an overview of the problem incremental compiler tries to solve and
then discusses design choices that led to the current implementation.

225

Overview

The goal of incremental compilation is detect changes to source files or to the
classpath and determine a small set of files to be recompiled in such a way that
it’ll yield the final result identical to the result from a full, batch compilation.
When reacting to changes the incremental compiler has to goals that are at odds
with each other:

• recompile as little source files as possible cover all changes to type checking
and produced

– byte code triggered by changed source files and/or classpath

The first goal is about making recompilation fast and it’s a sole point of in-
cremental compiler existence. The second goal is about correctness and sets a
lower limit on the size of a set of recompiled files. Determining that set is the
core problem incremental compiler tries to solve. We’ll dive a little bit into this
problem in the overview to understand what makes implementing incremental
compiler a challenging task.

Let’s consider this very simple example:

// A.scala
package a
class A {

def foo(): Int = 12
}

// B.scala
package b
class B {

def bar(x: a.A): Int = x.foo()
}

Let’s assume both of those files are already compiled and user changes A.scala
so it looks like this:

// A.scala
package a
class A {

def foo(): Int = 23 // changed constant
}

The first step of incremental compilation is to compile modified source files.
That’s minimal set of files incremental compiler has to compile. Modified ver-
sion of A.scala will be compiled successfully as changing the constant doesn’t
introduce type checking errors. The next step of incremental compilation is
determining whether changes applied to A.scala may affect other files. In the
example above only the constant returned by method foo has changed and that
does not affect compilation results of other files.

226

Let’s consider another change to A.scala:

// A.scala
package a
class A {

def foo(): String = "abc" // changed constant and return type
}

As before, the first step of incremental compilation is to compile modified files.
In this case we compile A.scala and compilation will finish successfully. The
second step is again determining whether changes to A.scala affect other files.
We see that the return type of the foo public method has changed so this might
affect compilation results of other files. Indeed, B.scala contains call to the foo
method so has to be compiled in the second step. Compilation of B.scala will
fail because of type mismatch in B.bar method and that error will be reported
back to the user. That’s where incremental compilation terminates in this case.

Let’s identify the two main pieces of information that were needed to make
decisions in the examples presented above. The incremental compiler algorithm
needs to:

• index source files so it knows whether there were API changes that might
affect other source files; e.g. it needs to detect changes to method signa-
tures as in the example above

– track dependencies between source files; once the change to an API is
detected the algorithm needs to determine the set of files that might
be potentially affected by this change

Both of those pieces of information are extracted from the Scala compiler.

Interaction with the Scala compiler

Incremental compiler interacts with Scala compiler in many ways:

provides three phases additional phases that extract needed information:

api phase extracts public interface of compiled sources by walking trees and
indexing types

dependency phase which extracts dependencies between source files (compilation
units)

analyzer phase which captures the list of emitted class files

defines a custom reporter which allows sbt to gather errors and warnings

subclasses Global to:

add the api, dependency and analyzer phases

set the custom reporter

227

manages instances of the custom Global and uses them to compile files it deter-
mined that need to be compiled

API extraction phase

The API extraction phase extracts information from Trees, Types and Symbols
and maps it to incremental compiler’s internal data structures described in the
api.specification file.Those data structures allow to express an API in a way
that is independent from Scala compiler version. Also, such representation is
persistent so it is serialized on disk and reused between compiler runs or even
sbt runs.

The API extraction phase consist of two major components:

1. mapping Types and Symbols to incremental compiler representation of an
extracted API

2. hashing that representation

Mapping Types and Symbols

The logic responsible for mapping Types and Symbols is implemented in
API.scala. With introduction of Scala reflection we have multiple variants
of Types and Symbols. The incremental compiler uses the variant defined in
scala.reflect.internal package.

Also, there’s one design choice that might not be obvious. When type corre-
sponding to a class or a trait is mapped then all inherited members are copied
instead of declarations in that class/trait. The reason for doing so is that it
greatly simplifies analysis of API representation because all relevant informa-
tion to a class is stored in one place so there’s no need for looking up parent
type representation. This simplicity comes at a price: the same information
is copied over and over again resulting in a performance hit. For example, ev-
ery class will have members of java.lang.Object duplicated along with full
information about their signatures.

Hashing an API representation

The incremental compiler (as it’s implemented right now) doesn’t need very
fine grained information about the API. The incremental compiler just needs
to know whether an API has changed since the last time it was indexed. For
that purpose hash sum is enough and it saves a lot of memory. Therefore, API
representation is hashed immediately after single compilation unit is processed
and only hash sum is stored persistently.

In earlier versions the incremental compiler wouldn’t hash. That resulted in
a very high memory consumption and poor serialization/deserialization perfor-
mance.

228

https://raw.github.com/sbt/sbt/0.13/api.specification
https://github.com/sbt/sbt/blob/0.13/compile/interface/src/main/scala/xsbt/API.scala

The hashing logic is implemented in the HashAPI.scala file.

Dependency phase

The incremental compiler extracts all Symbols given compilation unit depends
on (refers to) and then tries to map them back to corresponding source/class
files. Mapping a Symbol back to a source file is performed by using sourceFile
attribute that Symbols derived from source files have set. Mapping a Symbol
back to (binary) class file is more tricky because Scala compiler does not track
origin of Symbols derived from binary files. Therefore simple heuristic is used
which maps a qualified class name to corresponding classpath entry. This logic
is implemented in dependency phase which has an access to the full classpath.

The set of Symbols given compilation unit depend on is obtained by performing
a tree walk. The tree walk examines all tree nodes that can introduce a de-
pendency (refer to another Symbol) and gathers all Symbols assigned to them.
Symbols are assigned to tree nodes by Scala compiler during type checking
phase.

Incremental compiler used to rely on CompilationUnit.depends for collecting
dependencies. However, name hashing requires a more precise dependency in-
formation. Check #1002 for details.

Analyzer phase

Collection of produced class files is extracted by inspecting contents
CompilationUnit.icode property which contains all ICode classes that
backend will emit as JVM class files.

Name hashing algorithm

Motivation

Let’s consider the following example:

// A.scala
class A {

def inc(x: Int): Int = x+1
}

// B.scala
class B {

def foo(a: A, x: Int): Int = a.inc(x)
}

Let’s assume both of those files are compiled and user changes A.scala so it
looks like this:

229

https://github.com/sbt/sbt/blob/0.13/compile%20/api/src/main/scala/xsbt/api/HashAPI.scala
https://github.com/sbt/sbt/issues/1002

// A.scala
class A {

def inc(x: Int): Int = x+1
def dec(x: Int): Int = x-1

}

Once user hits save and asks incremental compiler to recompile it’s project it
will do the following:

1. Recompile A.scala as the source code has changed (first iteration)
2. While recompiling it will reindex API structure of A.scala and detect it

has changed
3. It will determine that B.scala depends on A.scala and since the API

structure of A.scala has changed B.scala has to be recompiled as well
(B.scala has been invalidated)

4. Recompile B.scala because it was invalidated in 3. due to dependency
change

5. Reindex API structure of B.scala and find out that it hasn’t changed so
we are done

To summarize, we’ll invoke Scala compiler twice: one time to recompile A.scala
and then to recompile B.scala because A has a new method dec.

However, one can easily see that in this simple scenario recompilation of B.scala
is not needed because addition of dec method to A class is irrelevant to the B
class as its not using it and it is not affected by it in any way.

In case of two files the fact that we recompile too much doesn’t sound too bad.
However, in practice, the dependency graph is rather dense so one might end
up recompiling the whole project upon a change that is irrelevant to almost all
files in the whole project. That’s exactly what happens in Play projects when
routes are modified. The nature of routes and reversed routes is that every
template and every controller depends on some methods defined in those two
classes (Routes and ReversedRoutes) but changes to specific route definition
usually affects only small subset of all templates and controllers.

The idea behind name hashing is to exploit that observation and make the
invalidation algorithm smarter about changes that can possibly affect a small
number of files.

Detection of irrelevant dependencies (direct approach)

A change to the API of a given source file X.scala can be called irrelevant if
it doesn’t affect the compilation result of file Y.scala even if Y.scala depends
on X.scala.

From that definition one can easily see that a change can be declared irrelevant
only with respect to a given dependency. Conversely, one can declare a depen-
dency between two source files irrelevant with respect to a given change of API

230

in one of the files if the change doesn’t affect the compilation result of the other
file. From now on we’ll focus on detection of irrelevant dependencies.

A very naive way of solving a problem of detecting irrelevant dependencies would
be to say that we keep track of all used methods in Y.scala so if a method in
X.scala is added/removed/modified we just check if it’s being used in Y.scala
and if it’s not then we consider the dependency of Y.scala on X.scala irrelevant
in this particular case.

Just to give you a sneak preview of problems that quickly arise if you consider
that strategy let’s consider those two scenarios.

Inheritance

We’ll see how a method not used in another source file might affect its compila-
tion result. Let’s consider this structure:

// A.scala
abstract class A

// B.scala
class B extends A

Let’s add an abstract method to class A:

// A.scala
abstract class A {

def foo(x: Int): Int
}

Now, once we recompile A.scala we could just say that since A.foo is not used
in B class then we don’t need to recompile B.scala. However, this is not true
because B doesn’t implement a newly introduced, abstract method and an error
should be reported.

Therefore, a simple strategy of looking at used methods for determining whether
a given dependency is relevant or not is not enough.

Enrichment pattern

Here we’ll see another case of newly introduced method (that is not used any-
where yet) that affects compilation results of other files. This time, no inher-
itance will be involved but we’ll use enrichment pattern (implicit conversions)
instead.

Let’s assume we have the following structure:

// A.scala
class A

231

// B.scala
class B {

class AOps(a: A) {
def foo(x: Int): Int = x+1

}
implicit def richA(a: A): AOps = new AOps(a)
def bar(a: A): Int = a.foo(12) // this is expanded to richA(a).foo so we are calling AOPs.foo method

}

Now, let’s add a foo method directly to A:

// A.scala
class A {

def foo(x: Int): Int = x-1
}

Now, once we recompile A.scala and detect that there’s a new method defined
in the A class we would need to consider whether this is relevant to the depen-
dency of B.scala on A.scala. Notice that in B.scala we do not use A.foo
(it didn’t exist at the time B.scala was compiled) but we use AOps.foo and
it’s not immediately clear that AOps.foo has anything to do with A.foo. One
would need to detect the fact that a call to AOps.foo as a result of implicit
conversion richA that was inserted because we failed to find foo on A before.

This kind of analysis gets us very quickly to the implementation complexity of
Scala’s type checker and is not feasible to implement in a general case.

Too much information to track

All of the above assumed we actually have full information about the structure
of the API and used methods preserved so we can make use of it. However, as
described in Hashing an API representation we do not store the whole repre-
sentation of the API but only its hash sum. Also, dependencies are tracked at
source file level and not at class/method level.

One could imagine reworking the current design to track more information but
it would be a very big undertaking. Also, the incremental compiler used to
preserve the whole API structure but it switched to hashing due to the resulting
infeasible memory requirements.

Detection of irrelevant dependencies (name hashing)

As we saw in the previous chapter, the direct approach of tracking more infor-
mation about what’s being used in the source files becomes tricky very quickly.
One would wish to come up with a simpler and less precise approach that would
still yield big improvements over the existing implementation.

232

The idea is to not track all the used members and reason very precisely about
when a given change to some members affects the result of the compilation of
other files. We would track just the used simple names instead and we would
also track the hash sums for all members with the given simple name. The
simple name means just an unqualified name of a term or a type.

Let’s see first how this simplified strategy addresses the problem with the enrich-
ment pattern. We’ll do that by simulating the name hashing algorithm. Let’s
start with the original code:

// A.scala
class A

// B.scala
class B {

class AOps(a: A) {
def foo(x: Int): Int = x+1

}
implicit def richA(a: A): AOps = new AOps(a)
def bar(a: A): Int = a.foo(12) // this is expanded to richA(a).foo so we are calling AOPs.foo method

}

During the compilation of those two files we’ll extract the following information:

usedNames("A.scala"): A
usedNames("B.scala"): B, AOps, a, A, foo, x, Int, richA, AOps, bar

nameHashes("A.scala"): A -> ...
nameHashes("B.scala"): B -> ..., AOps -> ..., foo -> ..., richA -> ..., bar -> ...

The usedNames relation track all the names mentioned in the given source file.
The nameHashes relation gives us a hash sum of the groups of members that
are put together in one bucket if they have the same simple name. In addition
to the information presented above we still track the dependency of B.scala on
A.scala.

Now, if we add a foo method to A class:

// A.scala
class A {

def foo(x: Int): Int = x-1
}

and recompile, we’ll get the following (updated) information:

usedNames("A.scala"): A, foo
nameHashes("A.scala"): A -> ..., foo -> ...

The incremental compiler compares the name hashes before and after the change
and detects that the hash sum of foo has changed (it’s been added). Therefore,
it looks at all the source files that depend on A.scala, in our case it’s just

233

B.scala, and checks whether foo appears as a used name. It does, therefore it
recompiles B.scala as intended.

You can see now, that if we added another method to A like xyz then B.scala
wouldn’t be recompiled because nowhere in B.scala is the name xyz mentioned.
Therefore, if you have reasonably non-clashing names you should benefit from
a lot of dependencies between source files marked as irrelevant.

It’s very nice that this simple, name-based heuristic manages to withstand the
“enrichment pattern” test. However, name-hashing fails to pass the other test of
inheritance. In order to address that problem, we’ll need to take a closer look
at the dependencies introduced by inheritance vs dependencies introduced by
member references.

Dependencies introduced by member reference and inheritance

The core assumption behind the name-hashing algorithm is that if a user
adds/modifies/removes a member of a class (e.g. a method) then the results of
compilation of other classes won’t be affected unless they are using that par-
ticular member. Inheritance with its various override checks makes the whole
situation much more complicated; if you combine it with mix-in composition
that introduces new fields to classes inheriting from traits then you quickly
realize that inheritance requires special handling.

The idea is that for now we would switch back to the old scheme whenever in-
heritance is involved. Therefore, we track dependencies introduced by member
reference separately from dependencies introduced by inheritance. All depen-
dencies introduced by inheritance are not subject to name-hashing analysis so
they are never marked as irrelevant.

The intuition behind the dependency introduced by inheritance is very simple:
it’s a dependency a class/trait introduces by inheriting from another class/trait.
All other dependencies are called dependencies by member reference because
they are introduced by referring (selecting) a member (method, type alias, inner
class, val, etc.) from another class. Notice that in order to inherit from a class
you need to refer to it so dependencies introduced by inheritance are a strict
subset of member reference dependencies.

Here’s an example which illustrates the distinction:

// A.scala
class A {

def foo(x: Int): Int = x+1
}

// B.scala
class B(val a: A)

234

// C.scala
trait C

// D.scala
trait D[T]

// X.scala
class X extends A with C with D[B] {
// dependencies by inheritance: A, C, D
// dependencies by member reference: A, C, D, B

}

// Y.scala
class Y {

def test(b: B): Int = b.a.foo(12)
// dependencies by member reference: B, Int, A

}

There are two things to notice:

1. X does not depend on B by inheritance because B is passed as a type
parameter to D; we consider only types that appear as parents to X

2. Y does depend on A even if there’s no explicit mention of A in the source
file; we select a method foo defined in A and that’s enough to introduce a
dependency

To sum it up, the way we want to handle inheritance and the problems it
introduces is to track all dependencies introduced by inheritance separately and
have a much more strict way of invalidating dependencies. Essentially, whenever
there’s a dependency by inheritance it will react to any (even minor) change in
parent types.

Computing name hashes

One thing we skimmed over so far is how name hashes are actually computed.

As mentioned before, all definitions are grouped together by their simple name
and then hashed as one bucket. If a definition (for example a class) contains
other definition then those nested definitions do not contribute to a hash sum.
The nested definitions will contribute to hashes of buckets selected by their
name.

What is included in the interface of a Scala class

It is surprisingly tricky to understand which changes to a class require recompil-
ing its clients. The rules valid for Java are much simpler (even if they include
some subtle points as well); trying to apply them to Scala will prove frustrating.

235

Here is a list of a few surprising points, just to illustrate the ideas; this list is
not intended to be complete.

1. Since Scala supports named arguments in method invocations, the name
of method arguments are part of its interface.

2. Adding a method to a trait requires recompiling all implementing classes.
The same is true for most changes to a method signature in a trait.

3. Calls to super.methodName in traits are resolved to calls to an abstract
method called fullyQualifiedTraitName$$super$methodName; such
methods only exist if they are used. Hence, adding the first call to
super.methodName for a specific method name changes the interface. At
present, this is not yet handled—see #466.

4. sealed hierarchies of case classes allow to check exhaustiveness of pattern
matching. Hence pattern matches using case classes must depend on the
complete hierarchy - this is one reason why dependencies cannot be easily
tracked at the class level (see Scala issue SI-2559 for an example.). Check
#1104 for detailed discussion of tracking dependencies at class level.

Debugging an interface representation

If you see spurious incremental recompilations or you want to understand what
changes to an extracted interface cause incremental recompilation then sbt 0.13
has the right tools for that.

In order to debug the interface representation and its changes as you modify
and recompile source code you need to do two things:

1. Enable the incremental compiler’s apiDebug option.
2. Add diff-utils library to sbt’s classpath. Check documentation of

sbt.extraClasspath system property in the Command-Line-Reference.

warning

Enabling the apiDebug option increases significantly the memory
consumption and degrades the performance of the incremental com-
piler. The underlying reason is that in order to produce meaningful
debugging information about interface differences the incremental
compiler has to retain the full representation of the interface instead
of just the hash sum as it does by default.

Keep this option enabled when you are debugging the incremental
compiler problem only.

Below is a complete transcript which shows how to enable interface debugging
in your project. First, we download the diffutils jar and pass it to sbt:

curl -O https://java-diff-utils.googlecode.com/files/diffutils-1.2.1.jar
sbt -Dsbt.extraClasspath=diffutils-1.2.1.jar
[info] Loading project definition from /Users/grek/tmp/sbt-013/project

236

https://github.com/sbt/sbt/issues/466
https://github.com/scala/bug/issues/2559
https://github.com/sbt/sbt/issues/1104
https://code.google.com/p/java-diff-utils/

[info] Set current project to sbt-013 (in build file:/Users/grek/tmp/sbt-013/)
> set incOptions := incOptions.value.withApiDebug(true)
[info] Defining *:incOptions
[info] The new value will be used by compile:incCompileSetup, test:incCompileSetup
[info] Reapplying settings...
[info] Set current project to sbt-013 (in build file:/Users/grek/tmp/sbt-013/)

Let’s suppose you have the following source code in Test.scala:

class A {
def b: Int = 123

}

compile it and then change the Test.scala file so it looks like:

class A {
def b: String = "abc"

}

and run compile again. Now if you run last compile you should see the
following lines in the debugging log

> last compile
[...]
[debug] Detected a change in a public API:
[debug] --- /Users/grek/tmp/sbt-013/Test.scala
[debug] +++ /Users/grek/tmp/sbt-013/Test.scala
[debug] @@ -23,7 +23,7 @@
[debug] ^inherited^ final def ##(): scala.this#Int
[debug] ^inherited^ final def synchronized[java.lang.Object.T0 >: scala.this#Nothing <: scala.this#Any](x$1: <java.lang.Object.T0>): <java.lang.Object.T0>
[debug] ^inherited^ final def $isInstanceOf[java.lang.Object.T0 >: scala.this#Nothing <: scala.this#Any](): scala.this#Boolean
[debug] ^inherited^ final def $asInstanceOf[java.lang.Object.T0 >: scala.this#Nothing <: scala.this#Any](): <java.lang.Object.T0>
[debug] def <init>(): this#A
[debug] -def b: scala.this#Int
[debug] +def b: java.lang.this#String
[debug] }

You can see a unified diff of the two interface textual represetantions. As you
can see, the incremental compiler detected a change to the return type of b
method.

Why changing the implementation of a method might affect clients,
and why type annotations help

This section explains why relying on type inference for return types of public
methods is not always appropriate. However this is an important design issue, so
we cannot give fixed rules. Moreover, this change is often invasive, and reducing
compilation times is not often a good enough motivation. That is also why we

237

discuss some of the implications from the point of view of binary compatibility
and software engineering.

Consider the following source file A.scala:

import java.io._
object A {

def openFiles(list: List[File]) =
list.map(name => new FileWriter(name))

}

Let us now consider the public interface of trait A. Note that the return type
of method openFiles is not specified explicitly, but computed by type infer-
ence to be List[FileWriter]. Suppose that after writing this source code, we
introduce some client code and then modify A.scala as follows:

import java.io._
object A {

def openFiles(list: List[File]) =
Vector(list.map(name => new BufferedWriter(new FileWriter(name))): _*)

}

Type inference will now compute the result type as Vector[BufferedWriter];
in other words, changing the implementation lead to a change to the public
interface, with two undesirable consequences:

1. Concerning our topic, the client code needs to be recompiled, since chang-
ing the return type of a method, in the JVM, is a binary-incompatible
interface change.

2. If our component is a released library, using our new version requires
recompiling all client code, changing the version number, and so on. Often
not good, if you distribute a library where binary compatibility becomes
an issue.

3. More in general, the client code might now even be invalid. The following
code will for instance become invalid after the change:

val res: List[FileWriter] = A.openFiles(List(new File("foo.input")))

Also the following code will break:

val a: Seq[Writer] = new BufferedWriter(new FileWriter("bar.input"))
A.openFiles(List(new File("foo.input")))

How can we avoid these problems?

Of course, we cannot solve them in general: if we want to alter the interface
of a module, breakage might result. However, often we can remove implemen-
tation details from the interface of a module. In the example above, for in-
stance, it might well be that the intended return type is more general - namely
Seq[Writer]. It might also not be the case - this is a design choice to be de-
cided on a case-by-case basis. In this example I will assume however that the

238

designer chooses Seq[Writer], since it is a reasonable choice both in the above
simplified example and in a real-world extension of the above code.

The client snippets above will now become

val res: Seq[Writer] =
A.openFiles(List(new File("foo.input")))

val a: Seq[Writer] =
new BufferedWriter(new FileWriter("bar.input")) +:
A.openFiles(List(new File("foo.input")))

Bytecode Enhancers

sbt added an extension point whereby users can effectively manipulate Java
bytecode (.class files) before the incremental compiler attempts to cache the
classfile hashes. This allows libraries like Ebean to function with sbt without
corrupting the compiler cache and rerunning compile every few seconds.

This splits the compile task into several subTasks:

1. previousCompile: This task returns the previously persisted Analysis
object for this project.

2. compileIncremental: This is the core logic of compiling Scala/Java files
together. This task actually does the work of compiling a project incremen-
tally, including ensuring a minimum number of source files are compiled.
After this method, all .class files that would be generated by scalac + javac
will be available.

3. manipulateByteCode: This is a stub task which takes the compileIncremental
result and returns it. Plugins which need to manipulate bytecode are
expected to override this task with their own implementation, ensuring
to call the previous behavior.

4. compile: This task depends on manipulateBytecode and then persists
the Analysis object containing all incremental compiler information.

Here’s an example of how to hook the new manipulateBytecode key in your
own plugin:

Compile / manipulateBytecode := {
val previous = (Compile / manipulateBytecode).value
// Note: This must return a new Compiler.CompileResult with our changes.
doManipulateBytecode(previous)

}

239

Further references

The incremental compilation logic is implemented in https://github.com/sbt/s
bt/blob/0.13/compile/inc/src/main/scala/inc/Incremental.scala. Some discus-
sion on the incremental recompilation policies is available in issue #322, #288
and #1010.

Configuration

This part of the documentation has pages documenting particular sbt topics in
detail. Before reading anything in here, you will need the information in the
Getting Started Guide as a foundation.

Classpaths, sources, and resources

This page discusses how sbt builds up classpaths for different actions, like
compile, run, and test and how to override or augment these classpaths.

Basics

In sbt, the classpath includes the Scala library and (when declared as a depen-
dency) the Scala compiler. Classpath-related settings and tasks typically pro-
vide a value of type Classpath. This is an alias for Seq[Attributed[File]].
Attributed is a type that associates a heterogeneous map with each classpath
entry. Currently, this allows sbt to associate the Analysis resulting from com-
pilation with the corresponding classpath entry and for managed entries, the
ModuleID and Artifact that defined the dependency.

To explicitly extract the raw Seq[File], use the files method implicitly added
to Classpath:

val cp: Classpath = ...
val raw: Seq[File] = cp.files

To create a Classpath from a Seq[File], use classpath and to create an
Attributed[File] from a File, use Attributed.blank:

val raw: Seq[File] = ...
val cp: Classpath = raw.classpath

val rawFile: File = ..
val af: Attributed[File] = Attributed.blank(rawFile)

240

https://github.com/sbt/sbt/blob/0.13/compile/inc/src/main/scala/inc/Incremental.scala
https://github.com/sbt/sbt/blob/0.13/compile/inc/src/main/scala/inc/Incremental.scala
https://github.com/sbt/sbt/issues/322
https://github.com/sbt/sbt/issues/288
https://github.com/sbt/sbt/issues/1010
Getting-Started.html
../api/sbt/internal/util/Attributed.html

Unmanaged vs managed

Classpaths, sources, and resources are separated into two main categories: un-
managed and managed. Unmanaged files are manually created files that are
outside of the control of the build. They are the inputs to the build. Managed
files are under the control of the build. These include generated sources and
resources as well as resolved and retrieved dependencies and compiled classes.

Tasks that produce managed files should be inserted as follows:

Compile / sourceGenerators +=
generate((Compile / sourceManaged).value / "some_directory")

In this example, generate is some function of type File => Seq[File] that
actually does the work. So, we are appending a new task to the list of main
source generators (Compile / sourceGenerators).

To insert a named task, which is the better approach for plugins:

val mySourceGenerator = taskKey[Seq[File]](...)

Compile / mySourceGenerator :=
generate((Compile / sourceManaged).value / "some_directory")

Compile / sourceGenerators += (Compile / mySourceGenerator)

The task method is used to refer to the actual task instead of the result of the
task.

For resources, there are similar keys resourceGenerators and resourceManaged.

Excluding source files by name

The project base directory is by default a source directory in addition to
src/main/scala. You can exclude source files by name (butler.scala in the
example below) like:

unmanagedSources / excludeFilter := "butler.scala"

Read more on How to exclude .scala source file in project folder - Google Groups

External vs internal

Classpaths are also divided into internal and external dependencies. The in-
ternal dependencies are inter-project dependencies. These effectively put the
outputs of one project on the classpath of another project.

External classpaths are the union of the unmanaged and managed classpaths.

241

https://groups.google.com/group/simple-build-tool/browse_thread/thread/cd5332a164405568?hl=en

Keys

For classpaths, the relevant keys are:

• unmanagedClasspath
• managedClasspath
• externalDependencyClasspath
• internalDependencyClasspath

For sources:

• unmanagedSources These are by default built up from unmanaged-
SourceDirectories, which consists of scalaSource and javaSource.

• managedSources These are generated sources.
• sources Combines managedSources and unmanagedSources.
• sourceGenerators These are tasks that generate source files. Typically,

these tasks will put sources in the directory provided by sourceManaged.

For resources

• unmanagedResources These are by default built up from unmanage-
dResourceDirectories, which by default is resourceDirectory, excluding
files matched by defaultExcludes.

• managedResources By default, this is empty for standard projects. sbt
plugins will have a generated descriptor file here.

• resourceGenerators These are tasks that generate resource files. Typi-
cally, these tasks will put resources in the directory provided by resource-
Managed.

Use the inspect command for more details.

See also a related StackOverflow answer.

Example

You have a standalone project which uses a library that loads xxx.properties
from classpath at run time. You put xxx.properties inside directory “config”.
When you run “sbt run”, you want the directory to be in classpath.

Runtime / unmanagedClasspath += baseDirectory.value / "config"

Compiler Plugin Support

There is some special support for using compiler plugins. You can set
autoCompilerPlugins to true to enable this functionality.

autoCompilerPlugins := true

242

Inspecting-Settings.html
https://stackoverflow.com/a/7862872/850196

To use a compiler plugin, you either put it in your unmanaged library directory
(lib/ by default) or add it as managed dependency in the plugin configura-
tion. addCompilerPlugin is a convenience method for specifying plugin as the
configuration for a dependency:

addCompilerPlugin("org.scala-tools.sxr" %% "sxr" % "0.3.0")

The compile and testCompile actions will use any compiler plugins found
in the lib directory or in the plugin configuration. You are responsible for
configuring the plugins as necessary. For example, Scala X-Ray requires the
extra option:

// declare the main Scala source directory as the base directory
scalacOptions :=

scalacOptions.value :+ ("-Psxr:base-directory:" + (Compile / scalaSource).value.getAbsolutePath)

You can still specify compiler plugins manually. For example:

scalacOptions += "-Xplugin:<path-to-sxr>/sxr-0.3.0.jar"

Continuations Plugin Example

Support for continuations in Scala 2.12 is implemented as a compiler plugin.
You can use the compiler plugin support for this, as shown here.

val continuationsVersion = "1.0.3"

autoCompilerPlugins := true

addCompilerPlugin("org.scala-lang.plugins" % "scala-continuations-plugin_2.12.2" % continuationsVersion)

libraryDependencies += "org.scala-lang.plugins" %% "scala-continuations-library" % continuationsVersion

scalacOptions += "-P:continuations:enable"

Version-specific Compiler Plugin Example

Adding a version-specific compiler plugin can be done as follows:

val continuationsVersion = "1.0.3"

autoCompilerPlugins := true

libraryDependencies +=
compilerPlugin("org.scala-lang.plugins" % ("scala-continuations-plugin_" + scalaVersion.value) % continuationsVersion)

libraryDependencies += "org.scala-lang.plugins" %% "scala-continuations-library" % continuationsVersion

243

scalacOptions += "-P:continuations:enable"

Configuring Scala

sbt needs to obtain Scala for a project and it can do this automatically or you
can configure it explicitly. The Scala version that is configured for a project
will compile, run, document, and provide a REPL for the project code. When
compiling a project, sbt needs to run the Scala compiler as well as provide
the compiler with a classpath, which may include several Scala jars, like the
reflection jar.

Automatically managed Scala

The most common case is when you want to use a version of Scala that is
available in a repository. The only required configuration is the Scala version
you want to use. For example,

scalaVersion := "2.10.0"

This will retrieve Scala from the repositories configured via the resolvers set-
ting. It will use this version for building your project: compiling, running,
scaladoc, and the REPL.

Configuring the scala-library dependency

By default, the standard Scala library is automatically added as a dependency.
If you want to configure it differently than the default or you have a project
with only Java sources, set:

autoScalaLibrary := false

In order to compile Scala sources, the Scala library needs to be on the classpath.
When autoScalaLibrary is true, the Scala library will be on all classpaths: test,
runtime, and compile. Otherwise, you need to add it like any other dependency.
For example, the following dependency definition uses Scala only for tests:

autoScalaLibrary := false

libraryDependencies += "org.scala-lang" % "scala-library" % scalaVersion.value % "test"

Configuring additional Scala dependencies

When using a Scala dependency other than the standard library, add it as a
normal managed dependency. For example, to depend on the Scala compiler,

libraryDependencies += "org.scala-lang" % "scala-compiler" % scalaVersion.value

244

Note that this is necessary regardless of the value of the autoScalaLibrary
setting described in the previous section.

Configuring Scala tool dependencies

In order to compile Scala code, run scaladoc, and provide a Scala REPL, sbt
needs the scala-compiler jar. This should not be a normal dependency
of the project, so sbt adds a dependency on scala-compiler in the special,
private scala-tool configuration. It may be desirable to have more control
over this in some situations. Disable this automatic behavior with the
managedScalaInstance key:

managedScalaInstance := false

This will also disable the automatic dependency on scala-library. If you
do not need the Scala compiler for anything (compiling, the REPL, scaladoc,
etc…), you can stop here. sbt does not need an instance of Scala for your
project in that case. Otherwise, sbt will still need access to the jars for the
Scala compiler for compilation and other tasks. You can provide them by either
declaring a dependency in the scala-tool configuration or by explicitly defining
scalaInstance.

In the first case, add the scala-tool configuration and add a dependency on
scala-compiler in this configuration. The organization is not important, but
sbt needs the module name to be scala-compiler and scala-library in order
to handle those jars appropriately. For example,

managedScalaInstance := false

// Add the configuration for the dependencies on Scala tool jars
// You can also use a manually constructed configuration like:
// config("scala-tool").hide
ivyConfigurations += Configurations.ScalaTool

// Add the usual dependency on the library as well on the compiler in the
// 'scala-tool' configuration
libraryDependencies ++= Seq(

"org.scala-lang" % "scala-library" % scalaVersion.value,
"org.scala-lang" % "scala-compiler" % scalaVersion.value % "scala-tool"

)

In the second case, directly construct a value of type ScalaInstance, typically
using a method in the companion object, and assign it to scalaInstance. You
will also need to add the scala-library jar to the classpath to compile and
run Scala sources. For example,

managedScalaInstance := false
scalaInstance := ...

245

../api/sbt/internal/inc/ScalaInstance.html
../api/sbt/internal/inc/ScalaInstance$.html

Compile / unmanagedJars += scalaInstance.value.libraryJar

Switching to a local Scala version

To use a locally built Scala version, configure Scala home as described in the
following section. Scala will still be resolved as before, but the jars will come
from the configured Scala home directory.

Using Scala from a local directory

The result of building Scala from source is a Scala home directory
<base>/build/pack/ that contains a subdirectory lib/ containing the
Scala library, compiler, and other jars. The same directory layout is obtained
by downloading and extracting a Scala distribution. Such a Scala home
directory may be used as the source for jars by setting scalaHome. For
example,

scalaHome := Some(file("/home/user/scala-2.10/"))

By default, lib/scala-library.jar will be added to the unmanaged classpath
and lib/scala-compiler.jar will be used to compile Scala sources and provide
a Scala REPL. No managed dependency is recorded on scala-library. This
means that Scala will only be resolved from a repository if you explicitly define
a dependency on Scala or if Scala is depended on indirectly via a dependency.
In these cases, the artifacts for the resolved dependencies will be substituted
with jars in the Scala home lib/ directory.

Mixing with managed dependencies

As an example, consider adding a dependency on scala-reflect when
scalaHome is configured:

scalaHome := Some(file("/home/user/scala-2.10/"))

libraryDependencies += "org.scala-lang" % "scala-reflect" % scalaVersion.value

This will be resolved as normal, except that sbt will see if /home/user/scala-2.10/lib/scala-reflect.jar
exists. If it does, that file will be used in place of the artifact from the managed
dependency.

Using unmanaged dependencies only

Instead of adding managed dependencies on Scala jars, you can directly add
them. The scalaInstance task provides structured access to the Scala distri-
bution. For example, to add all jars in the Scala home lib/ directory,

246

scalaHome := Some(file("/home/user/scala-2.10/"))

Compile / unmanagedJars ++= scalaInstance.value.jars

To add only some jars, filter the jars from scalaInstance before adding them.

sbt’s Scala version

sbt needs Scala jars to run itself since it is written in Scala. sbt uses that same
version of Scala to compile the build definitions that you write for your project
because they use sbt APIs. This version of Scala is fixed for a specific sbt release
and cannot be changed. For sbt 1.9.8, this version is Scala 2.12.18. Because
this Scala version is needed before sbt runs, the repositories used to retrieve this
version are configured in the sbt launcher.

Forking

By default, the run task runs in the same JVM as sbt. Forking is required under
certain circumstances, however. Or, you might want to fork Java processes when
implementing new tasks.

By default, a forked process uses the same Java and Scala versions being used
for the build and the working directory and JVM options of the current process.
This page discusses how to enable and configure forking for both run and test
tasks. Each kind of task may be configured separately by scoping the relevant
keys as explained below.

Enable forking

The fork setting controls whether forking is enabled (true) or not (false). It
can be set in the run scope to only fork run commands or in the test scope to
only fork test commands.

To fork all test tasks (test, testOnly, and testQuick) and run tasks (run,
runMain, Test / run, and Test / runMain),

fork := true

To only fork Compile / run and Compile / runMain:

Compile / run / fork := true

To only fork Test / run and Test / runMain:

Test / run / fork := true

247

Sbt-Launcher.html
Running-Project-Code.html

Note: run and runMain share the same configuration and cannot be configured
separately.

To enable forking all test tasks only, set fork to true in the Test scope:

Test / fork := true

See Testing for more control over how tests are assigned to JVMs and what
options to pass to each group.

Change working directory

To change the working directory when forked, set Compile / run /
baseDirectory or Test / baseDirectory:

// sets the working directory for all `run`-like tasks
run / baseDirectory := file("/path/to/working/directory/")

// sets the working directory for `run` and `runMain` only
Compile / run / baseDirectory := file("/path/to/working/directory/")

// sets the working directory for `Test / run` and `Test / runMain` only
Test / run / baseDirectory := file("/path/to/working/directory/")

// sets the working directory for `test`, `testQuick`, and `testOnly`
Test / baseDirectory := file("/path/to/working/directory/")

Forked JVM options

To specify options to be provided to the forked JVM, set javaOptions:

run / javaOptions += "-Xmx8G"

or specify the configuration to affect only the main or test run tasks:

Test / run / javaOptions += "-Xmx8G"

or only affect the test tasks:

Test / javaOptions += "-Xmx8G"

Java Home

Select the Java installation to use by setting the javaHome directory:

javaHome := Some(file("/path/to/jre/"))

Note that if this is set globally, it also sets the Java installation used to compile
Java sources. You can restrict it to running only by setting it in the run scope:

248

Testing.html

run / javaHome := Some(file("/path/to/jre/"))

As with the other settings, you can specify the configuration to affect only the
main or test run tasks or just the test tasks.

Configuring output

By default, forked output is sent to the Logger, with standard output logged at
the Info level and standard error at the Error level. This can be configured
with the outputStrategy setting, which is of type OutputStrategy.

// send output to the build's standard output and error
outputStrategy := Some(StdoutOutput)

// send output to the provided OutputStream `someStream`
outputStrategy := Some(CustomOutput(someStream: OutputStream))

// send output to the provided Logger `log` (unbuffered)
outputStrategy := Some(LoggedOutput(log: Logger))

// send output to the provided Logger `log` after the process terminates
outputStrategy := Some(BufferedOutput(log: Logger))

As with other settings, this can be configured individually for main or test run
tasks or for test tasks.

Configuring Input

By default, the standard input of the sbt process is not forwarded to the forked
process. To enable this, configure the connectInput setting:

run / connectInput := true

Direct Usage

To fork a new Java process, use the Fork API. The values of interest are
Fork.java, Fork.javac, Fork.scala, and Fork.scalac. These are of type
Fork and provide apply and fork methods. For example, to fork a new Java
process, :

val options = ForkOptions(...)
val arguments: Seq[String] = ...
val mainClass: String = ...
val exitCode: Int = Fork.java(options, mainClass +: arguments)

ForkOptions defines the Java installation to use, the working directory, environ-
ment variables, and more. For example, :

249

../api/sbt/OutputStrategy.html
../api/sbt/Fork$.html
../api/sbt/Fork.html
../api/sbt/ForkOptions.html

val cwd: File = ...
val javaDir: File = ...
val options = ForkOptions(

envVars = Map("KEY" -> "value"),
workingDirectory = Some(cwd),
javaHome = Some(javaDir)

)

Global Settings

Basic global configuration file

Settings that should be applied to all projects can go in $HOME/.sbt/1.0/global.sbt
(or any file in $HOME/.sbt/1.0 with a .sbt extension). Plugins that are defined
globally in $HOME/.sbt/1.0/plugins/ are available to these settings. For
example, to change the default shellPrompt for your projects:

$HOME/.sbt/1.0/global.sbt

shellPrompt := { state =>
"sbt (%s)> ".format(Project.extract(state).currentProject.id)

}

You can also configure plugins globally added in $HOME/.sbt/1.0/plugins/build.sbt
(see next paragraph) in that file, but you need to use fully qualified names for
their properties. For example, for sbt-eclipse property withSource documented
in https://github.com/sbt/sbteclipse/wiki/Using-sbteclipse, you need to use:

com.typesafe.sbteclipse.core.EclipsePlugin.EclipseKeys.withSource := true

Global Settings using a Global Plugin

The $HOME/.sbt/1.0/plugins/ directory is a global plugin project. This can
be used to provide global commands, plugins, or other code.

To add a plugin globally, create $HOME/.sbt/1.0/plugins/build.sbt contain-
ing the dependency definitions. For example:

addSbtPlugin("org.example" % "plugin" % "1.0")

To change the default shellPrompt for every project using this approach, create
a local plugin $HOME/.sbt/1.0/plugins/ShellPrompt.scala:

import sbt._
import Keys._

object ShellPrompt extends AutoPlugin {
override def trigger = allRequirements

250

override def projectSettings = Seq(
shellPrompt := { state =>
"sbt (%s)> ".format(Project.extract(state).currentProject.id) }

)
}

The $HOME/.sbt/1.0/plugins/ directory is a full project that is included as
an external dependency of every plugin project. In practice, settings and code
defined here effectively work as if they were defined in a project’s project/
directory. This means that $HOME/.sbt/1.0/plugins/ can be used to try out
ideas for plugins such as shown in the shellPrompt example.

Java Sources

sbt has support for compiling Java sources with the limitation that dependency
tracking is limited to the dependencies present in compiled class files.

Usage

• compile will compile the sources under src/main/java by default.
• testCompile will compile the sources under src/test/java by default.

Pass options to the Java compiler by setting javacOptions:

javacOptions += "-g:none"

As with options for the Scala compiler, the arguments are not parsed by sbt.
Multi-element options, such as -source 1.5, are specified like:

javacOptions ++= Seq("-source", "1.5")

You can specify the order in which Scala and Java sources are built with the
compileOrder setting. Possible values are from the CompileOrder enumeration:
Mixed, JavaThenScala, and ScalaThenJava. If you have circular dependencies
between Scala and Java sources, you need the default, Mixed, which passes
both Java and Scala sources to scalac and then compiles the Java sources with
javac. If you do not have circular dependencies, you can use one of the other
two options to speed up your build by not passing the Java sources to scalac.
For example, if your Scala sources depend on your Java sources, but your Java
sources do not depend on your Scala sources, you can do:

compileOrder := CompileOrder.JavaThenScala

To specify different orders for main and test sources, scope the setting by con-
figuration:

251

// Java then Scala for main sources
Compile / compileOrder := CompileOrder.JavaThenScala

// allow circular dependencies for test sources
Test / compileOrder := CompileOrder.Mixed

Note that in an incremental compilation setting, it is not practical to ensure
complete isolation between Java sources and Scala sources because they share
the same output directory. So, previously compiled classes not involved in the
current recompilation may be picked up. A clean compile will always provide
full checking, however.

Known issues in mixed mode compilation

The Scala compiler does not identify compile-time constant variables (Java spec-
ification 4.12.4) in Java source code if their definition is not a literal. This issue
has several symptoms, described in the Scala ticket SI-5333:

1. The selection of a (non-literal) constant variable is rejected when used as
an argument to a Java annotation (a compile-time constant expression is
required).

2. The selection of a constant variable is not replaced by its value, but com-
piled as an actual field load (the Scala specification 4.1 defines that con-
stant expressions should be replaced by their values).

Since Scala 2.11.4, a similar issue arises when using a Java-defined annotation
in a Scala class. The Scala compiler does not recognize @Retention annotations
when parsing the annotation @interface from source and therefore emits the
annotation with visibility RUNTIME (SI-8928).

Ignoring the Scala source directories

By default, sbt includes src/main/scala and src/main/java in its list of un-
managed source directories. For Java-only projects, the unnecessary Scala di-
rectories can be ignored by modifying unmanagedSourceDirectories:

// Include only src/main/java in the compile configuration
Compile / unmanagedSourceDirectories := (Compile / javaSource).value :: Nil

// Include only src/test/java in the test configuration
Test / unmanagedSourceDirectories := (Test / javaSource).value :: Nil

However, there should not be any harm in leaving the Scala directories if they
are empty.

252

https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.12.4
https://github.com/scala/bug/issues/5333
https://www.scala-lang.org/files/archive/spec/2.13/04-basic-declarations-and-definitions.html#value-declarations-and-definitions
https://github.com/scala/bug/issues/8928

Mapping Files

Tasks like package, packageSrc, and packageDoc accept mappings of type
Seq[(File, String)] from an input file to the path to use in the resulting arti-
fact (jar). Similarly, tasks that copy files accept mappings of type Seq[(File,
File)] from an input file to the destination file. There are some methods
on PathFinder and Path that can be useful for constructing the Seq[(File,
String)] or Seq[(File, File)] sequences.

A common way of making this sequence is to start with a PathFinder or
Seq[File] (which is implicitly convertible to PathFinder) and then call the
pair method. See the PathFinder API for details, but essentially this method
accepts a function File => Option[String] or File => Option[File] that
is used to generate mappings.

Relative to a directory

The Path.relativeTo method is used to map a File to its path String relative
to a base directory or directories. The relativeTo method accepts a base
directory or sequence of base directories to relativize an input file against. The
first directory that is an ancestor of the file is used in the case of a sequence of
base directories.

For example:

import Path.relativeTo
val files: Seq[File] = file("/a/b/C.scala") :: Nil
val baseDirectories: Seq[File] = file("/a") :: Nil
val mappings: Seq[(File,String)] = files pair relativeTo(baseDirectories)

val expected = (file("/a/b/C.scala") -> "b/C.scala") :: Nil
assert(mappings == expected)

Rebase

The Path.rebase method relativizes an input file against one or more base
directories (the first argument) and then prepends a base String or File (the
second argument) to the result. As with relativeTo, the first base directory
that is an ancestor of the input file is used in the case of multiple base directories.

For example, the following demonstrates building a Seq[(File, String)] us-
ing rebase:

import Path.rebase
val files: Seq[File] = file("/a/b/C.scala") :: Nil
val baseDirectories: Seq[File] = file("/a") :: Nil
val mappings: Seq[(File,String)] = files pair rebase(baseDirectories, "pre/")

253

../api/sbt/io/PathFinder.html
../api/sbt/io/Path$.html
../api/sbt/io/PathFinder.html

val expected = (file("/a/b/C.scala") -> "pre/b/C.scala") :: Nil
assert(mappings == expected)

Or, to build a Seq[(File, File)]:

import Path.rebase
val files: Seq[File] = file("/a/b/C.scala") :: Nil
val baseDirectories: Seq[File] = file("/a") :: Nil
val newBase: File = file("/new/base")
val mappings: Seq[(File,File)] = files pair rebase(baseDirectories, newBase)

val expected = (file("/a/b/C.scala") -> file("/new/base/b/C.scala")) :: Nil
assert(mappings == expected)

Flatten

The Path.flat method provides a function that maps a file to the last compo-
nent of the path (its name). For a File to File mapping, the input file is mapped
to a file with the same name in a given target directory. For example:

import Path.flat
val files: Seq[File] = file("/a/b/C.scala") :: Nil
val mappings: Seq[(File,String)] = files pair flat

val expected = (file("/a/b/C.scala") -> "C.scala") :: Nil
assert(mappings == expected)

To build a Seq[(File, File)] using flat:

import Path.flat
val files: Seq[File] = file("/a/b/C.scala") :: Nil
val newBase: File = file("/new/base")
val mappings: Seq[(File,File)] = files pair flat(newBase)

val expected = (file("/a/b/C.scala") -> file("/new/base/C.scala")) :: Nil
assert(mappings == expected)

Alternatives

To try to apply several alternative mappings for a file, use |, which is implicitly
added to a function of type A => Option[B]. For example, to try to relativize
a file against some base directories but fall back to flattening:

import Path.relativeTo
val files: Seq[File] = file("/a/b/C.scala") :: file("/zzz/D.scala") :: Nil
val baseDirectories: Seq[File] = file("/a") :: Nil

254

val mappings: Seq[(File,String)] = files pair (relativeTo(baseDirectories) | flat)

val expected = (file("/a/b/C.scala") -> "b/C.scala")) :: (file("/zzz/D.scala") -> "D.scala")) :: Nil
assert(mappings == expected)

Local Scala

To use a locally built Scala version, define the scalaHome setting, which is of
type Option[File]. This Scala version will only be used for the build and not
for sbt, which will still use the version it was compiled against.

Example:

scalaHome := Some(file("/path/to/scala"))

Using a local Scala version will override the scalaVersion setting and will not
work with cross building.

sbt reuses the class loader for the local Scala version. If you recompile your
local Scala version and you are using sbt interactively, run

> reload

to use the new compilation results.

Macro Projects

Introduction

Some common problems arise when working with macros.

1. The current macro implementation in the compiler requires that macro im-
plementations be compiled before they are used. The solution is typically
to put the macros in a subproject or in their own configuration.

2. Sometimes the macro implementation should be distributed with the main
code that uses them and sometimes the implementation should not be
distributed at all.

The rest of the page shows example solutions to these problems.

Defining the Project Relationships

The macro implementation will go in a subproject in the macro/ directory. The
core project in the core/ directory will depend on this subproject and use the
macro. This configuration is shown in the following build definition. build.sbt:

255

Cross-Build.html

lazy val commonSettings = Seq(
scalaVersion := "2.12.18",
organization := "com.example"

)
lazy val scalaReflect = Def.setting { "org.scala-lang" % "scala-reflect" % scalaVersion.value }

lazy val core = (project in file("core"))
.dependsOn(macroSub)
.settings(
commonSettings,
// other settings here

)

lazy val macroSub = (project in file("macro"))
.settings(
commonSettings,
libraryDependencies += scalaReflect.value
// other settings here

)

This specifies that the macro implementation goes in macro/src/main/scala/
and tests go in macro/src/test/scala/. It also shows that we need a depen-
dency on the compiler for the macro implementation. As an example macro,
we’ll use desugar from macrocosm. macro/src/main/scala/demo/Demo.scala:

package demo

import language.experimental.macros
import scala.reflect.macros.blackbox.Context

object Demo {

// Returns the tree of `a` after the typer, printed as source code.
def desugar(a: Any): String = macro desugarImpl

def desugarImpl(c: Context)(a: c.Expr[Any]) = {
import c.universe._

val s = show(a.tree)
c.Expr(
Literal(Constant(s))

)
}

}

macro/src/test/scala/demo/Usage.scala:

package demo

256

https://github.com/retronym/macrocosm

object Usage {
def main(args: Array[String]): Unit = {

val s = Demo.desugar(List(1, 2, 3).reverse)
println(s)

}
}

This can be then run at the console:

$ sbt
> macroSub/Test/run
scala.collection.immutable.List.apply[Int](1, 2, 3).reverse

Actual tests can be defined and run as usual with macro/test.

The main project can use the macro in the same way that the tests do. For
example,

core/src/main/scala/MainUsage.scala:

package demo

object Usage {
def main(args: Array[String]): Unit = {

val s = Demo.desugar(List(6, 4, 5).sorted)
println(s)

}
}

$ sbt
> core/run
scala.collection.immutable.List.apply[Int](6, 4, 5).sorted[Int](math.this.Ordering.Int)

Common Interface

Sometimes, the macro implementation and the macro usage should share some
common code. In this case, declare another subproject for the common code and
have the main project and the macro subproject depend on the new subproject.
For example, the project definitions from above would look like:

lazy val commonSettings = Seq(
scalaVersion := "2.12.18",
organization := "com.example"

)
lazy val scalaReflect = Def.setting { "org.scala-lang" % "scala-reflect" % scalaVersion.value }

lazy val core = (project in file("core"))
.dependsOn(macroSub, util)

257

.settings(
commonSettings,
// other settings here

)

lazy val macroSub = (project in file("macro"))
.dependsOn(util)
.settings(
commonSettings,
libraryDependencies += scalaReflect.value
// other settings here

)

lazy util = (project in file("util"))
.settings(
commonSettings,
// other setting here

)

Code in util/src/main/scala/ is available for both the macroSub and main
projects to use.

Distribution

To include the macro code with the core code, add the binary and source map-
pings from the macro subproject to the core project. And also macro subproject
should be removed from core project dependency in publishing. For example,
the core Project definition above would now look like:

lazy val core = (project in file("core"))
.dependsOn(macroSub % "compile-internal, test-internal")
.settings(
commonSettings,
// include the macro classes and resources in the main jar
Compile / packageBin / mappings ++= (macroSub / Compile / packageBin / mappings).value,
// include the macro sources in the main source jar
Compile / packageSrc / mappings ++= (macroSub / Compile / packageSrc / mappings).value

)

You may wish to disable publishing the macro implementation. This is done by
overriding publish and publishLocal to do nothing:

lazy val macroSub = (project in file("macro"))
.settings(
commonSettings,
libraryDependencies += scalaReflect.value,
publish := {},

258

publishLocal := {}
)

The techniques described here may also be used for the common interface de-
scribed in the previous section.

Paths

This page describes files, sequences of files, and file filters. The base type used
is java.io.File, but several methods are augmented through implicits:

• RichFile adds methods to File
• PathFinder adds methods to File and Seq[File]
• Path and IO provide general methods related to files and I/O.

Constructing a File

sbt uses java.io.File to represent a file and defines the type alias File for
java.io.File so that an extra import is not necessary. The file method
is an alias for the single-argument File constructor to simplify constructing a
new file from a String:

val source: File = file("/home/user/code/A.scala")

Additionally, sbt augments File with a / method, which is an alias for the two-
argument File constructor for building up a path:

def readme(base: File): File = base / "README"

Relative files should only be used when defining the base directory of a Project,
where they will be resolved properly.

val root = Project("root", file("."))

Elsewhere, files should be absolute or be built up from an absolute base File.
The baseDirectory setting defines the base directory of the build or project
depending on the scope.

For example, the following setting sets the unmanaged library directory to be
the “custom_lib” directory in a project’s base directory:

unmanagedBase := baseDirectory.value /"custom_lib"

Or, more concisely:

unmanagedBase := baseDirectory.value /"custom_lib"

This setting sets the location of the shell history to be in the base directory of
the build, irrespective of the project the setting is defined in:

historyPath := Some((ThisBuild / baseDirectory).value / ".history"),

259

https://docs.oracle.com/javase/8/docs/api/java/io/File.html
../api/sbt/io/RichFile.html
../api/sbt/io/PathFinder.html
../api/sbt/io/Path$.html
../api/sbt/io/IO$.html
https://docs.oracle.com/javase/8/docs/api/java/io/File.html

Path Finders

A PathFinder computes a Seq[File] on demand. It is a way to build a se-
quence of files. There are several methods that augment File and Seq[File]
to construct a PathFinder. Ultimately, call get on the resulting PathFinder
to evaluate it and get back a Seq[File].

Selecting descendants

The ** method accepts a java.io.FileFilter and selects all files matching
that filter.

def scalaSources(base: File): PathFinder = (base / "src") ** "*.scala"

get

This selects all files that end in .scala that are in src or a descendent directory.
The list of files is not actually evaluated until get is called:

def scalaSources(base: File): Seq[File] = {
val finder: PathFinder = (base / "src") ** "*.scala"
finder.get

}

If the filesystem changes, a second call to get on the same PathFinder object
will reflect the changes. That is, the get method reconstructs the list of files
each time. Also, get only returns Files that existed at the time it was called.

Selecting children

Selecting files that are immediate children of a subdirectory is done with a single
*:

def scalaSources(base: File): PathFinder = (base / "src") * "*.scala"

This selects all files that end in .scala that are in the src directory.

Existing files only

If a selector, such as /, **, or *, is used on a path that does not represent a
directory, the path list will be empty:

def emptyFinder(base: File) = (base / "lib" / "ivy.jar") * "not_possible"

260

Name Filter

The argument to the child and descendent selectors * and ** is actually a
NameFilter. An implicit is used to convert a String to a NameFilter that
interprets * to represent zero or more characters of any value. See the Name
Filters section below for more information.

Combining PathFinders

Another operation is concatenation of PathFinders:

def multiPath(base: File): PathFinder =
(base / "src" / "main") +++
(base / "lib") +++
(base / "target" / "classes")

When evaluated using get, this will return src/main/, lib/, and
target/classes/. The concatenated finder supports all standard meth-
ods. For example,

def jars(base: File): PathFinder =
(base / "lib" +++ base / "target") * "*.jar"

selects all jars directly in the “lib” and “target” directories.

A common problem is excluding version control directories. This can be accom-
plished as follows:

def sources(base: File) =
((base / "src") ** "*.scala") --- ((base / "src") ** ".svn" ** "*.scala")

The first selector selects all Scala sources and the second selects all sources that
are a descendent of a .svn directory. The --- method removes all files returned
by the second selector from the sequence of files returned by the first selector.

Filtering

There is a filter method that accepts a predicate of type File => Boolean
and is non-strict:

// selects all directories under "src"
def srcDirs(base: File) = ((base / "src") ** "*") filter { _.isDirectory }

// selects archives (.zip or .jar) that are selected by 'somePathFinder'
def archivesOnly(base: PathFinder) = base filter ClasspathUtilities.isArchive

Empty PathFinder

PathFinder.empty is a PathFinder that returns the empty sequence when get
is called:

261

assert(PathFinder.empty.get == Seq[File]())

PathFinder to String conversions

Convert a PathFinder to a String using one of the following methods:

• toString is for debugging. It puts the absolute path of each component
on its own line.

• absString gets the absolute paths of each component and separates them
by the platform’s path separator.

• getPaths produces a Seq[String] containing the absolute paths of each
component

Mappings

The packaging and file copying methods in sbt expect values of type
Seq[(File,String)] and Seq[(File,File)], respectively. These are map-
pings from the input file to its (String) path in the jar or its (File) destination.
This approach replaces the relative path approach (using the ## method) from
earlier versions of sbt.

Mappings are discussed in detail on the Mapping-Files page.

File Filters

The argument to * and ** is of type java.io.FileFilter. sbt provides combinators
for constructing FileFilters.

First, a String may be implicitly converted to a FileFilter. The resulting filter
selects files with a name matching the string, with a * in the string interpreted
as a wildcard. For example, the following selects all Scala sources with the word
“Test” in them:

def testSrcs(base: File): PathFinder = (base / "src") * "*Test*.scala"

There are some useful combinators added to FileFilter. The || method de-
clares alternative FileFilters. The following example selects all Java or Scala
source files under “src”:

def sources(base: File): PathFinder = (base / "src") ** ("*.scala" || "*.java")

The -- method excludes a files matching a second filter from the files matched
by the first:

def imageResources(base: File): PathFinder =
(base/"src"/"main"/"resources") * ("*.png" -- "logo.png")

This will get right.png and left.png, but not logo.png, for example.

262

https://docs.oracle.com/javase/8/docs/api/java/io/FileFilter.html

Parallel Execution

Task ordering

Task ordering is specified by declaring a task’s inputs. Correctness of execution
requires correct input declarations. For example, the following two tasks do not
have an ordering specified:

write := IO.write(file("/tmp/sample.txt"), "Some content.")

read := IO.read(file("/tmp/sample.txt"))

sbt is free to execute write first and then read, read first and then write, or
read and write simultaneously. Execution of these tasks is non-deterministic
because they share a file. A correct declaration of the tasks would be:

write := {
val f = file("/tmp/sample.txt")
IO.write(f, "Some content.")
f

}

read := IO.read(write.value)

This establishes an ordering: read must run after write. We’ve also guaranteed
that read will read from the same file that write created.

Practical constraints

Note: The feature described in this section is experimental. The default config-
uration of the feature is subject to change in particular.

Background

Declaring inputs and dependencies of a task ensures the task is properly ordered
and that code executes correctly. In practice, tasks share finite hardware and
software resources and can require control over utilization of these resources.
By default, sbt executes tasks in parallel (subject to the ordering constraints
already described) in an effort to utilize all available processors. Also by default,
each test class is mapped to its own task to enable executing tests in parallel.

Prior to sbt 0.12, user control over this process was restricted to:

1. Enabling or disabling all parallel execution (parallelExecution := false, for
example).

2. Enabling or disabling mapping tests to their own tasks (Test / parallelEx-
ecution := false, for example).

263

(Although never exposed as a setting, the maximum number of tasks running
at a given time was internally configurable as well.)

The second configuration mechanism described above only selected between run-
ning all of a project’s tests in the same task or in separate tasks. Each project
still had a separate task for running its tests and so test tasks in separate projects
could still run in parallel if overall execution was parallel. There was no way to
restriction execution such that only a single test out of all projects executed.

Configuration

sbt 0.12.0 introduces a general infrastructure for restricting task concurrency
beyond the usual ordering declarations. There are two parts to these restrictions.

1. A task is tagged in order to classify its purpose and resource utiliza-
tion. For example, the compile task may be tagged as Tags.Compile and
Tags.CPU.

2. A list of rules restrict the tasks that may execute concurrently. For exam-
ple, Tags.limit(Tags.CPU, 4) would allow up to four computation-heavy
tasks to run at a time.

The system is thus dependent on proper tagging of tasks and then on a good
set of rules.

Tagging Tasks

In general, a tag is associated with a weight that represents the task’s relative
utilization of the resource represented by the tag. Currently, this weight is an
integer, but it may be a floating point in the future. Initialize[Task[T]]
defines two methods for tagging the constructed Task: tag and tagw. The first
method, tag, fixes the weight to be 1 for the tags provided to it as arguments.
The second method, tagw, accepts pairs of tags and weights. For example, the
following associates the CPU and Compile tags with the compile task (with a
weight of 1).

def myCompileTask = Def.task { ... } tag(Tags.CPU, Tags.Compile)

compile := myCompileTask.value

Different weights may be specified by passing tag/weight pairs to tagw:

def downloadImpl = Def.task { ... } tagw(Tags.Network -> 3)

download := downloadImpl.value

Defining Restrictions

264

Once tasks are tagged, the concurrentRestrictions setting sets restrictions
on the tasks that may be concurrently executed based on the weighted tags of
those tasks. This is necessarily a global set of rules, so it must be scoped Global
/. For example,

Global / concurrentRestrictions := Seq(
Tags.limit(Tags.CPU, 2),
Tags.limit(Tags.Network, 10),
Tags.limit(Tags.Test, 1),
Tags.limitAll(15)

)

The example limits:

• the number of CPU-using tasks to be no more than 2
• the number of tasks using the network to be no more than 10
• test execution to only one test at a time across all projects
• the total number of tasks to be less than or equal to 15

Note that these restrictions rely on proper tagging of tasks. Also, the value
provided as the limit must be at least 1 to ensure every task is able to be
executed. sbt will generate an error if this condition is not met.

Most tasks won’t be tagged because they are very short-lived. These tasks are
automatically assigned the label Untagged. You may want to include these tasks
in the CPU rule by using the limitSum method. For example:

...
Tags.limitSum(2, Tags.CPU, Tags.Untagged)
...

Note that the limit is the first argument so that tags can be provided as varargs.

Another useful convenience function is Tags.exclusive. This specifies that a
task with the given tag should execute in isolation. It starts executing only
when no other tasks are running (even if they have the exclusive tag) and no
other tasks may start execution until it completes. For example, a task could
be tagged with a custom tag Benchmark and a rule configured to ensure such a
task is executed by itself:

...
Tags.exclusive(Benchmark)
...

Finally, for the most flexibility, you can specify a custom function of type
Map[Tag,Int] => Boolean. The Map[Tag,Int] represents the weighted
tags of a set of tasks. If the function returns true, it indicates that the
set of tasks is allowed to execute concurrently. If the return value is false,
the set of tasks will not be allowed to execute concurrently. For example,
Tags.exclusive(Benchmark) is equivalent to the following:

265

...
Tags.customLimit { (tags: Map[Tag,Int]) =>

val exclusive = tags.getOrElse(Benchmark, 0)
// the total number of tasks in the group

val all = tags.getOrElse(Tags.All, 0)
// if there are no exclusive tasks in this group, this rule adds no restrictions

exclusive == 0 ||
// If there is only one task, allow it to execute.
all == 1

}
...

There are some basic rules that custom functions must follow, but the main one
to be aware of in practice is that if there is only one task, it must be allowed to
execute. sbt will generate a warning if the user defines restrictions that prevent
a task from executing at all and will then execute the task anyway.

Built-in Tags and Rules

Built-in tags are defined in the Tags object. All tags listed below must be
qualified by this object. For example, CPU refers to the Tags.CPU value.

The built-in semantic tags are:

• Compile - describes a task that compiles sources.
• Test - describes a task that performs a test.
• Publish
• Update
• Untagged - automatically added when a task doesn’t explicitly define any

tags.
• All- automatically added to every task.

The built-in resource tags are:

• Network - describes a task’s network utilization.
• Disk - describes a task’s filesystem utilization.
• CPU - describes a task’s computational utilization.

The tasks that are currently tagged by default are:

• compile : Compile, CPU
• test : Test
• update : Update, Network
• publish, publishLocal : Publish, Network

Of additional note is that the default test task will propagate its tags to each
child task created for each test class.

The default rules provide the same behavior as previous versions of sbt:

266

Global / concurrentRestrictions := {
val max = Runtime.getRuntime.availableProcessors
Tags.limitAll(if(parallelExecution.value) max else 1) :: Nil

}

As before, Test / parallelExecution controls whether tests are mapped to
separate tasks. To restrict the number of concurrently executing tests in all
projects, use:

Global / concurrentRestrictions += Tags.limit(Tags.Test, 1)

Custom Tags

To define a new tag, pass a String to the Tags.Tag method. For example:

val Custom = Tags.Tag("custom")

Then, use this tag as any other tag. For example:

def aImpl = Def.task { ... } tag(Custom)

aCustomTask := aImpl.value

Global / concurrentRestrictions +=
Tags.limit(Custom, 1)

Future work

This is an experimental feature and there are several aspects that may change
or require further work.

Tagging Tasks

Currently, a tag applies only to the immediate computation it is defined on. For
example, in the following, the second compile definition has no tags applied to
it. Only the first computation is labeled.

def myCompileTask = Def.task { ... } tag(Tags.CPU, Tags.Compile)

compile := myCompileTask.value

compile := {
val result = compile.value
... do some post processing ...

}

Is this desirable? expected? If not, what is a better, alternative behavior?

267

Fractional weighting

Weights are currently ints, but could be changed to be doubles if fractional
weights would be useful. It is important to preserve a consistent notion of what
a weight of 1 means so that built-in and custom tasks share this definition and
useful rules can be written.

Default Behavior

User feedback on what custom rules work for what workloads will help determine
a good set of default tags and rules.

Adjustments to Defaults

Rules should be easier to remove or redefine, perhaps by giving them names. As
it is, rules must be appended or all rules must be completely redefined. Also,
tags can only be defined for tasks at the original definition site when using the
:= syntax.

For removing tags, an implementation of removeTag should follow from the
implementation of tag in a straightforward manner.

Other characteristics

The system of a tag with a weight was selected as being reasonably pow-
erful and flexible without being too complicated. This selection is not
fundamental and could be enhance, simplified, or replaced if necessary.
The fundamental interface that describes the constraints the system
must work within is sbt.ConcurrentRestrictions. This interface is
used to provide an intermediate scheduling queue between task execution
(sbt.Execute) and the underlying thread-based parallel execution service
(java.util.concurrent.CompletionService). This intermediate queue
restricts new tasks from being forwarded to the j.u.c.CompletionService
according to the sbt.ConcurrentRestrictions implementation. See the
sbt.ConcurrentRestrictions API documentation for details.

External Processes

Usage

Scala includes a process library to simplify working with external processes. Use
import scala.sys.process._ to bring the implicit conversions into scope.

To run an external command, follow it with an exclamation mark !:

"find project -name *.jar" !

268

https://github.com/sbt/sbt/blob/v1.0.3/tasks/src/main/scala/sbt/ConcurrentRestrictions.scala

An implicit converts the String to scala.sys.process.ProcessBuilder,
which defines the ! method. This method runs the constructed command,
waits until the command completes, and returns the exit code. Alternatively,
the run method defined on ProcessBuilder runs the command and returns an
instance of scala.sys.process.Process, which can be used to destroy the
process before it completes. With no arguments, the ! method sends output to
standard output and standard error. You can pass a Logger to the ! method
to send output to the Logger:

"find project -name *.jar" ! log

You can get a Logger with:

val log = streams.value.log

If you need to set the working directory or modify the environment, call
scala.sys.process.Process explicitly, passing the command sequence (com-
mand and argument list) or command string first and the working directory
second. Any environment variables can be passed as a vararg list of key/value
String pairs.

Process("ls" :: "-l" :: Nil, Path.userHome, "key1" -> value1, "key2" -> value2) ! log

Operators are defined to combine commands. These operators start with # in
order to keep the precedence the same and to separate them from the operators
defined elsewhere in sbt for filters. In the following operator definitions, a and
b are subcommands.

• a #&& b Execute a. If the exit code is nonzero, return that exit code and
do not execute b. If the exit code is zero, execute b and return its exit
code.

• a #|| b Execute a. If the exit code is zero, return zero for the exit code
and do not execute b. If the exit code is nonzero, execute b and return
its exit code.

• a #| b Execute a and b, piping the output of a to the input of b.

There are also operators defined for redirecting output to Files and input from
Files and URLs. In the following definitions, url is an instance of URL and file
is an instance of File.

• a #< url or url #> a Use url as the input to a. a may be a File or a
command.

• a #< file or file #> a Use file as the input to a. a may be a File or
a command.

• a #> file or file #< a Write the output of a to file. a may be a File,
URL, or a command.

• a #>> file or file #<< a Append the output of a to file. a may be a
File, URL, or a command.

There are some additional methods to get the output from a forked process into
a String or the output lines as a Stream[String]. Here are some examples,

269

but see the ProcessBuilder API for details.

val listed: String = "ls" !!
val lines2: Stream[String] = "ls" lines_!

Finally, there is a cat method to send the contents of Files and URLs to standard
output.

Examples

Download a URL to a File:

url("http://databinder.net/dispatch/About") #> file("About.html") !
// or
file("About.html") #< url("http://databinder.net/dispatch/About") !

Copy a File:

file("About.html") #> file("About_copy.html") !
// or
file("About_copy.html") #< file("About.html") !

Append the contents of a URL to a File after filtering through grep:

url("http://databinder.net/dispatch/About") #> "grep JSON" #>> file("About_JSON") !
// or
file("About_JSON") #<< ("grep JSON" #< url("http://databinder.net/dispatch/About")) !

Search for uses of null in the source directory:

"find src -name *.scala -exec grep null {} ;" #| "xargs test -z" #&& "echo null-free" #|| "echo null detected" !

Use cat:

val spde = url("http://technically.us/spde/About")
val dispatch = url("http://databinder.net/dispatch/About")
val build = file("project/build.properties")
cat(spde, dispatch, build) #| "grep -i scala" !

Running Project Code

The run and console actions provide a means for running user code in the same
virtual machine as sbt.

run also exists in a variant called runMain that takes an additional initial argu-
ment allowing you to specify the fully qualified name of the main class you want
to run. run andrunMain share the same configuration and cannot be configured
separately.

This page describes the problems with running user code in the same virtual
machine as sbt, how sbt handles these problems, what types of code can use

270

https://www.scala-lang.org/api/2.12.x/scala/sys/process/ProcessBuilder.html

this feature, and what types of code must use a forked jvm. Skip to User Code
if you just want to see when you should use a forked jvm.

Problems

System.exit

User code can call System.exit, which normally shuts down the JVM. Because
the run and console actions run inside the same JVM as sbt, this also ends the
build and requires restarting sbt.

Threads

User code can also start other threads. Threads can be left running after the
main method returns. In particular, creating a GUI creates several threads,
some of which may not terminate until the JVM terminates. The program is
not completed until either System.exit is called or all non-daemon threads
terminate.

Deserialization and class loading

During deserialization, the wrong class loader might be used for various complex
reasons. This can happen in many scenarios, and running under SBT is just one
of them. This is discussed for instance in issues #163 and #136. The reason is
explained here.

Testing

Basics

The standard source locations for testing are:

• Scala sources in src/test/scala/
• Java sources in src/test/java/
• Resources for the test classpath in src/test/resources/

The resources may be accessed from tests by using the getResource methods
of java.lang.Class or java.lang.ClassLoader.

The main Scala testing frameworks (ScalaCheck, ScalaTest, and specs2) provide
an implementation of the common test interface and only need to be added to the
classpath to work with sbt. For example, ScalaCheck may be used by declaring
it as a managed dependency:

lazy val scalacheck = "org.scalacheck" %% "scalacheck" % "1.17.0"
libraryDependencies += scalacheck % Test

271

Forking.html
Forking.html
https://issues.apache.org/jira/browse/GROOVY-1627
https://scalacheck.org/
https://www.scalatest.org/
http://specs2.org/
Library-Dependencies.html

Test is the configuration and means that ScalaCheck will only be on the test
classpath and it isn’t needed by the main sources. This is generally good practice
for libraries because your users don’t typically need your test dependencies to
use your library.

With the library dependency defined, you can then add test sources in the
locations listed above and compile and run tests. The tasks for running tests
are test and testOnly. The test task accepts no command line arguments
and runs all tests:

> test

testOnly

The testOnly task accepts a whitespace separated list of test names to run. For
example:

> testOnly org.example.MyTest1 org.example.MyTest2

It supports wildcards as well:

> testOnly org.example.*Slow org.example.MyTest1

testQuick

The testQuick task, like testOnly, allows to filter the tests to run to specific
tests or wildcards using the same syntax to indicate the filters. In addition to
the explicit filter, only the tests that satisfy one of the following conditions are
run:

• The tests that failed in the previous run
• The tests that were not run before
• The tests that have one or more transitive dependencies, maybe in a dif-

ferent project, recompiled.

Tab completion

Tab completion is provided for test names based on the results of the last
Test/compile. This means that a new sources aren’t available for tab com-
pletion until they are compiled and deleted sources won’t be removed from tab
completion until a recompile. A new test source can still be manually written
out and run using testOnly.

Other tasks

Tasks that are available for main sources are generally available for test sources,
but are prefixed with Test / on the command line and are referenced in Scala
code with Test / as well. These tasks include:

272

Library-Management.html#ivy-configurations

• Test / compile
• Test / console
• Test / consoleQuick
• Test / run
• Test / runMain

See Running for details on these tasks.

Output

By default, logging is buffered for each test source file until all tests for that file
complete. This can be disabled by setting logBuffered:

Test / logBuffered := false

Test Reports

By default, sbt will generate JUnit XML test reports for all tests in the build, lo-
cated in the target/test-reports directory for a project. This can be disabled
by disabling the JUnitXmlReportPlugin

val myProject = (project in file(".")).disablePlugins(plugins.JUnitXmlReportPlugin)

Options

Test Framework Arguments

Arguments to the test framework may be provided on the command line to the
testOnly tasks following a -- separator. For example:

> testOnly org.example.MyTest -- -verbosity 1

To specify test framework arguments as part of the build, add options con-
structed by Tests.Argument:

Test / testOptions += Tests.Argument("-verbosity", "1")

To specify them for a specific test framework only:

Test / testOptions += Tests.Argument(TestFrameworks.ScalaCheck, "-verbosity", "1")

Setup and Cleanup

Specify setup and cleanup actions using Tests.Setup and Tests.Cleanup.
These accept either a function of type () => Unit or a function of type
ClassLoader => Unit. The variant that accepts a ClassLoader is passed the
class loader that is (or was) used for running the tests. It provides access to
the test classes as well as the test framework classes.

273

Running.html

Note: When forking, the ClassLoader containing the test classes
cannot be provided because it is in another JVM. Only use the ()
=> Unit variants in this case.

Examples:

Test / testOptions += Tests.Setup(() => println("Setup"))
Test / testOptions += Tests.Cleanup(() => println("Cleanup"))
Test / testOptions += Tests.Setup(loader => ...)
Test / testOptions += Tests.Cleanup(loader => ...)

Disable Parallel Execution of Tests

By default, sbt runs all tasks in parallel and within the same JVM as sbt itself.
Because each test is mapped to a task, tests are also run in parallel by default.
To make tests within a given project execute serially: :

Test / parallelExecution := false

Test can be replaced with IntegrationTest to only execute integration tests
serially. Note that tests from different projects may still execute concurrently.

Filter classes

If you want to only run test classes whose name ends with “Test”, use
Tests.Filter:

Test / testOptions := Seq(Tests.Filter(s => s.endsWith("Test")))

Forking tests

The setting:

Test / fork := true

specifies that all tests will be executed in a single external JVM. See Forking
for configuring standard options for forking. By default, tests executed in a
forked JVM are executed sequentially. More control over how tests are assigned
to JVMs and what options to pass to those is available with testGrouping key.
For example in build.sbt:

import Tests._

{
def groupByFirst(tests: Seq[TestDefinition]) =
tests groupBy (_.name(0)) map {

case (letter, tests) =>
val options = ForkOptions().withRunJVMOptions(Vector("-Dfirst.letter"+letter))
new Group(letter.toString, tests, SubProcess(options))

274

Forking.html

} toSeq

Test / testGrouping := groupByFirst((Test / definedTests).value)
}

The tests in a single group are run sequentially. Control the number of
forked JVMs allowed to run at the same time by setting the limit on
Tags.ForkedTestGroup tag, which is 1 by default. Setup and Cleanup actions
cannot be provided with the actual test class loader when a group is forked.

In addition, forked tests can optionally be run in parallel within the forked
JVM(s), using the following setting:

Test / testForkedParallel := true

Additional test configurations

You can add an additional test configuration to have a separate set of test
sources and associated compilation, packaging, and testing tasks and settings.
The steps are:

• Define the configuration
• Add the tasks and settings
• Declare library dependencies
• Create sources
• Run tasks

The following two examples demonstrate this. The first example shows how
to enable integration tests. The second shows how to define a customized test
configuration. This allows you to define multiple types of tests per project.

Integration Tests

The following full build configuration demonstrates integration tests.

lazy val scalatest = "org.scalatest" %% "scalatest" % "3.2.17"

ThisBuild / organization := "com.example"
ThisBuild / scalaVersion := "2.12.18"
ThisBuild / version := "0.1.0-SNAPSHOT"

lazy val root = (project in file("."))
.configs(IntegrationTest)
.settings(
Defaults.itSettings,
libraryDependencies += scalatest % "it,test"
// other settings here

)

275

• configs(IntegrationTest) adds the predefined integration test configu-
ration. This configuration is referred to by the name it.

• settings(Defaults.itSettings) adds compilation, packaging, and test-
ing actions and settings in the IntegrationTest configuration.

• settings(libraryDependencies += scalatest % "it,test") adds
scalatest to both the standard test configuration and the integration test
configuration it. To define a dependency only for integration tests, use
“it” as the configuration instead of “it,test”.

The standard source hierarchy is used:

• src/it/scala for Scala sources
• src/it/java for Java sources
• src/it/resources for resources that should go on the integration test

classpath

The standard testing tasks are available, but must be prefixed with
IntegrationTest/. For example to run all integration tests:

> IntegrationTest/test

Or to run a specific test:

> IntegrationTest/testOnly org.example.AnIntegrationTest

Similarly the standard settings may be configured for the IntegrationTest
configuration. If not specified directly, most IntegrationTest settings delegate
to Test settings by default. For example, if test options are specified as:

Test / testOptions += ...

then these will be picked up by the Test configuration and in turn by the
IntegrationTest configuration. Options can be added specifically for integra-
tion tests by putting them in the IntegrationTest configuration:

IntegrationTest / testOptions += ...

Or, use := to overwrite any existing options, declaring these to be the definitive
integration test options:

IntegrationTest / testOptions := Seq(...)

Custom test configuration

The previous example may be generalized to a custom test configuration.

lazy val scalatest = "org.scalatest" %% "scalatest" % "3.2.17"
lazy val FunTest = config("fun") extend(Test)

ThisBuild / organization := "com.example"
ThisBuild / scalaVersion := "2.12.18"
ThisBuild / version := "0.1.0-SNAPSHOT"

276

lazy val root = (project in file("."))
.configs(FunTest)
.settings(
inConfig(FunTest)(Defaults.testSettings),
libraryDependencies += scalatest % FunTest
// other settings here

)

Instead of using the built-in configuration, we defined a new one:

lazy val FunTest = config("fun") extend(Test)

The extend(Test) part means to delegate to Test for undefined FunTest set-
tings. The line that adds the tasks and settings for the new test configuration
is:

settings(inConfig(FunTest)(Defaults.testSettings))

This says to add test and settings tasks in the FunTest configuration.
We could have done it this way for integration tests as well. In fact,
Defaults.itSettings is a convenience definition: val itSettings =
inConfig(IntegrationTest)(Defaults.testSettings).

The comments in the integration test section hold, except with IntegrationTest
replaced with FunTest and "it" replaced with "fun". For example, test options
can be configured specifically for FunTest:

FunTest / testOptions += ...

Test tasks are run by prefixing them with fun:

> FunTest / test

Additional test configurations with shared sources

An alternative to adding separate sets of test sources (and compilations) is to
share sources. In this approach, the sources are compiled together using the
same classpath and are packaged together. However, different tests are run
depending on the configuration.

lazy val scalatest = "org.scalatest" %% "scalatest" % "3.2.17"
lazy val FunTest = config("fun") extend(Test)

ThisBuild / organization := "com.example"
ThisBuild / scalaVersion := "2.12.18"
ThisBuild / version := "0.1.0-SNAPSHOT"

def itFilter(name: String): Boolean = name endsWith "ITest"
def unitFilter(name: String): Boolean = (name endsWith "Test") && !itFilter(name)

277

lazy val root = (project in file("."))
.configs(FunTest)
.settings(
inConfig(FunTest)(Defaults.testTasks),
libraryDependencies += scalatest % FunTest,
Test / testOptions := Seq(Tests.Filter(unitFilter)),
FunTest / testOptions := Seq(Tests.Filter(itFilter))
// other settings here

)

The key differences are:

• We are now only adding the test tasks (inConfig(FunTest)(Defaults.testTasks))
and not compilation and packaging tasks and settings.

• We filter the tests to be run for each configuration.

To run standard unit tests, run test (or equivalently, Test / test):

> test

To run tests for the added configuration (here, "FunTest"), prefix it with the
configuration name as before:

> FunTest / test
> FunTest / testOnly org.example.AFunTest

Application to parallel execution

One use for this shared-source approach is to separate tests that can run in
parallel from those that must execute serially. Apply the procedure described in
this section for an additional configuration. Let’s call the configuration serial:

lazy val Serial = config("serial") extend(Test)

Then, we can disable parallel execution in just that configuration using:

Serial / parallelExecution := false

The tests to run in parallel would be run with test and the ones to run in serial
would be run with Serial/test.

JUnit

Support for JUnit5 is provided by sbt-jupiter-interface. To add JUnit Jupiter
support into your project, add the jupiter-interface dependency in your project’s
main build.sbt file.

libraryDependencies += "net.aichler" % "jupiter-interface" % "0.9.0" % Test

and the sbt-jupiter-interface plugin to your project/plugins.sbt

278

https://github.com/sbt/sbt-jupiter-interface

addSbtPlugin("net.aichler" % "sbt-jupiter-interface" % "0.9.0")

Support for JUnit4 is provided by junit-interface. Add the junit-interface de-
pendency in your project’s main build.sbt file.

libraryDependencies += "com.github.sbt" % "junit-interface" % "0.13.3" % Test

Extensions

This page describes adding support for additional testing libraries and defining
additional test reporters. You do this by implementing sbt interfaces (described
below). If you are the author of the testing framework, you can depend on
the test interface as a provided dependency. Alternatively, anyone can provide
support for a test framework by implementing the interfaces in a separate project
and packaging the project as an sbt Plugin.

Custom Test Framework

The main Scala testing libraries have built-in support for sbt. To add support
for a different framework, implement the uniform test interface.

Custom Test Reporters

Test frameworks report status and results to test reporters. You can create a
new test reporter by implementing either TestReportListener or TestsListener.

Using Extensions

To use your extensions in a project definition:

Modify the testFrameworks setting to reference your test framework:

testFrameworks += new TestFramework("custom.framework.ClassName")

Specify the test reporters you want to use by overriding the testListeners
setting in your project definition.

testListeners += customTestListener

where customTestListener is of type sbt.TestReportListener.

In process class loading

By default, sbt executes the run and test tasks within its own JVM instance.
It emulates running an external java command by invoking the task in an iso-
lated ClassLoader. Compared to forking, this approach reduces the start start
up latency and total runtime. The performance benefit from simply reusing

279

https://github.com/sbt/junit-interface
Plugins.html
https://github.com/sbt/test-interface
../api/sbt/TestReportListener.html
../api/sbt/TestsListener.html
Forking.html

the JVM is modest. Class loading and linking of the application dependencies
dominate the start up time of many applications. sbt reduces this start up
latency by re-using some of the loaded classes between runs. It does this by
creating a layered ClassLoader following the standard delegation model of a
java ClassLoader. The outermost layer, which always contains the class files
and jars specific to the project, is discarded between runs. The inner layers,
however, can be reused.

Starting with sbt 1.3.0, it is possible to configure the particular approach that
sbt takes to generate layered ClassLoader instances. It is specified via the
classLoaderLayeringStrategy. There are three possible values:

1. ScalaLibrary - The parent of the outermost layer is able to load the scala
standard library as well as the scala reflect library provided it is on the
application classpath. This is the default strategy. It is most similar to
the layered ClassLoaders provided by sbt versions < 1.3.0.

2. AllLibraryJars - Adds an additional layer for all of the dependency
jars between the scala library layer and the outermost layer. It is the
default strategy when turbo mode is enabled. This strategy can signifi-
cantly improve the startup and total runtime performance compared to
ScalaLibrary. Results may be inconsistent if any of the libraries have mu-
table global state because, unlike ScalaLibrary, the global state persists
between runs. When any libraries use java serialization, AllLibraryJars
should be avoided.

3. Flat - No layering is used. The full classpath, as specified by the
fullClasspath key of the task is loaded in the outermost layer. Con-
sider using as an alternative to fork if any issues are experienced with
ScalaLibrary or if the application requires all classes to be loaded in
the same ClassLoader, which may be the case for some uses of java
serialization.

The classLoaderLayeringStrategy can be set in different configurations. For
example, to use the AllLibraryJars strategy in the Test configuration, add

Test / classLoaderLayeringStrategy := ClassLoaderLayeringStrategy.AllLibraryJars

to the build.sbt file. Assuming no other changes to the build.sbt file, The
run task will still use ScalaLibrary strategy.

Troubleshooting

Java reflection may cause issues when used with layered classloaders
because it is possible that the class method that loads another class
via reflection may not have access to that class to be loaded. This
is particularly likely if the class is loaded using Class.forName or

280

https://docs.oracle.com/javase/8/docs/api/java/lang/ClassLoader.html

Thread.currentThread.getContextClassLoader.loadClass. Consider
the following example:

package example

import scala.concurrent.{ Await, Future }
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration.Duration

object ReflectionExample {
def main(args: Array[String]): Unit = Await.result(Future {

val cl = Thread.currentThread.getContextClassLoader
println(cl.loadClass("example.Foo"))

}, Duration.Inf)
}
class Foo

If one runs ReflectionExample with sbt run using the sbt default
ScalaLibrary strategy, it will fail with a ClassNotFoundException be-
cause the context classloader of the thread that backs the future is the scala
library classloader which is not able to load project classes. To work around
this limitation without changing the layering strategy to Flat, one can do the
following:

1. Use Class.forName instead of ClassLoader.loadClass. The jvm
implicitly uses the loader of the calling class for loading classes using
Class.forName. In this case, ReflectionExample is the calling class and
it will be in the same classloader as Foo since they are both part of the
project classpath.

2. Provide a classloader for loading. In the example above, this can be done
by replacing val cl = Thread.currentThread.getContextClassLoader
with val cl = getClass.getClassLoader.

For case (2), if the name lookup is performed by a library, then a ClassLoader
parameter could be added to the library method that does the lookup. For
example,

object Library {
def lookup(name: String): Class[_] =
Thread.currentThread.getContextClassLoader.loadClass(name)

}

could be rewritten to

object Library {
def lookup(name: String): Class[_] =
lookup(name, Thread.currentThread.getContextClassLoader)

def lookup(name: String, loader: ClassLoader): Class[_] =

281

loader.loadClass(name)
}

Globs

sbt 1.3.0 introduces the Glob type which can be used to specify a file system
query. The design is inspired by shell globs. Glob has only one public method,
matches(java.nio.file.Path), that can be used to check if a path matches
the glob pattern.

Constructing Globs

Globs can be constructed explicitly or using a dsl that uses the / operator to
extend queries. In all of the examples provided, we use java.nio.file.Path,
but java.io.File may also be used.

The simplest Glob represents a single path. Explicitly create a single path glob
with:

val glob = Glob(Paths.get("foo/bar"))
println(glob.matches(Paths.get("foo"))) // prints false
println(glob.matches(Paths.get("foo/bar"))) // prints true
println(glob.matches(Paths.get("foo/bar/baz"))) // prints false

It can also be created using the glob dsl with:

val glob = Paths.get("foo/bar").toGlob

There are two special glob objects: 1) AnyPath (aliased by *) matches any path
with just one name component 2) RecursiveGlob (aliased by **) matches all
paths

Using AnyPath, we can explicitly construct a glob that matches all children of
a directory:

val path = Paths.get("/foo/bar")
val children = Glob(path, AnyPath)
println(children.matches(path)) // prints false
println(children.matches(path.resolve("baz")) // prints true
println(children.matches(path.resolve("baz").resolve("buzz") // prints false

Using the dsl, the above becomes:

val children = Paths.get("/foo/bar").toGlob / AnyPath
val dslChildren = Paths.get("/foo/bar").toGlob / *
// these two definitions have identical results

Recursive globs are similar:

282

https://en.wikipedia.org/wiki/Glob_%28programming%29

val path = Paths.get("/foo/bar")
val allDescendants = Glob(path, RescursiveGlob)
println(allDescendants.matches(path)) // prints false
println(allDescendants.matches(path.resolve("baz")) // prints true
println(allDescendants.matches(path.resolve("baz").resolve("buzz") // prints true

or

val allDescendants = Paths.get("/foo/bar").toGlob / **

Path names

Globs may also be constructed using path names. The following three globs are
equivalent:

val pathGlob = Paths.get("foo").resolve("bar")
val glob = Glob("foo/bar")
val altGlob = Glob("foo") / "bar"

When parsing glob paths, any / characters are automatically converted to \ on
windows.

Filters

Globs can apply name filters at each path level. For example,

val scalaSources = Paths.get("/foo/bar").toGlob / ** / "src" / "*.scala"

specifies all of the descendants of /foo/bar that have the scala file extension
whose parent directory is named src.

More advanced queries are also possible:

val scalaAndJavaSources =
Paths.get("/foo/bar").toGlob / ** / "src" / "*.{scala,java}"

Depth

The AnyPath special glob can be used to control the depth of the query. For
example, the glob

val twoDeep = Glob("/foo/bar") / * / * / *

matches any path that is a descendant of /foo/bar that has exactly two par-
ents, e.g. /foo/bar/a/b/c.txt would be accepted but not /foo/bar/a/b or
/foo/bar/a/b/c/d.txt.

283

Regular expressions

The Glob apis use glob syntax (see PathMatcher for details). Regular expres-
sions can be used instead:

val digitGlob = Glob("/foo/bar") / ".*-\d{2,3}[.]txt".r
digitGlob.matches(Paths.get("/foo/bar").resolve("foo-1.txt")) // false
digitGlob.matches(Paths.get("/foo/bar").resolve("foo-23.txt")) // true
digitGlob.matches(Paths.get("/foo/bar").resolve("foo-123.txt")) // true

It is possible to specify multiple path components in the regex:

val multiRegex = Glob("/foo/bar") / "baz-\d/.*/foo.txt"
multiRegex.matches(Paths.get("/foo/bar/baz-1/buzz/foo.txt")) // true
multiRegex.matches(Paths.get("/foo/bar/baz-12/buzz/foo.txt")) // false

Recursive globs cannot be expressed using regex syntax because ** is not valid
in a regex and paths are matched component wise (so "foo/.*/foo.txt" is
actually split into three regular expressions {"foo", ".*", "foo.txt"} for
matching purposes. To make the multiRegex from above recursive, one could
write:

val multiRegex = Glob("/foo/bar") / "baz-\d/".r / ** / "foo.txt"
multiRegex.matches(Paths.get("/foo/bar/baz-1/buzz/foo.txt")) // true
multiRegex.matches(Paths.get("/foo/bar/baz-1/fizz/buzz/foo.txt")) // true

In regex syntax, \ is an escape character and cannot be used as a path separator.
If the regex covers multiple path components, / must be used as the path
separator, even on Windows:

val multiRegex = Glob("/foo/bar") / "baz-\d/foo\.txt".r
val validRegex = Glob("/foo/bar") / "baz/Foo[.].txt".r
// throws java.util.regex.PatternSyntaxException because \F is not a valid
// regex construct
val invalidRegex = Glob("/foo/bar") / "baz\Foo[.].txt".r

Querying the file system with FileTreeView

Querying the file system for the files that match one or more Glob patterns is
done via the sbt.nio.file.FileTreeView trait. It provides two methods

1. def list(glob: Glob): Seq[(Path, FileAttributes)]
2. def list(globs: Seq[Glob]): Seq[(Path, FileAttributes)]

that can be used to retrieve all of the paths matching the provided patterns.

val scalaSources: Glob = ** / "*.scala"
val regularSources: Glob = "/foo/src/main/scala" / scalaSources
val scala212Sources: Glob = "/foo/src/main/scala-2.12"
val sources: Seq[Path] = FileTreeView.default.list(regularSources).map(_._1)

284

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/file/FileSystem.html#getPathMatcher(java.lang.String)
https://www.scala-lang.org/api/2.12.8/scala/util/matching/Regex.html
https://www.scala-lang.org/api/2.12.8/scala/util/matching/Regex.html

val allSources: Seq[Path] =
FileTreeView.default.list(Seq(regularSources, scala212Sources)).map(_._1)

In the variant that takes Seq[Glob] as input, sbt will aggregate all of the globs
in such a way that it will only ever list any directory on the file system once.
It should return all of the files whose path name matches any of the provided
Glob patterns in the input Seq[Glob].

File attributes

The FileTreeView trait is parameterized by a type, T, that is always
(java.nio.file.Path, sbt.nio.file.FileAttributes) in sbt. The
FileAttributes trait provides access to the following properties:

1. isDirectory – returns true if the Path represents a directory.
2. isRegularFile – returns true if the Path represents a regular file. This

should usually be the inverse of isDirectory.
3. isSymbolicLink – returns true if the Path is a symbolic link. The

default FileTreeView implementation always follows symbolic links.
If the symbolic link targets a regular file, both isSymbolicLink and
isRegularFile will be true. Similarly, if the link targets a directory,
both isSymbolicLink and isDirectory will be true. If the link is broken,
isSymbolicLink will be true but both isDirectory and isRegularFile
will be false.

The reason that the FileTreeView always provides the attributes is because
checking the type of a file requires a system call, which can be slow. All of the
major desktop operating systems provide apis for listing a directory where both
the file names and file node types are returned. This allows sbt to provide this
information without making an extra system call. We can use this to efficiently
filter paths:

// No additional io is performed in the call to attributes.isRegularFile
val scalaSourcePaths =
FileTreeView.default.list(Glob("/foo/src/main/scala/**/*.scala")).collect {

case (path, attributes) if attributes.isRegularFile => path
}

Filtering

In addition to the list methods described above, there two additional overloads
that take an sbt.nio.file.PathFilter argument:

1. def list(glob: Glob, filter: PathFilter): Seq[(Path, FileAttributes)]
2. def list(globs: Seq[Glob], filter: PathFilter): Seq[(Path,

FileAttributes)]

The PathFilter has a single abstract method:

def accept(path: Path, attributes: FileAttributes): Boolean

285

It can be used to further filter the query specified by the glob patterns:

val regularFileFilter: PathFilter = (_, a) => a.isRegularFile
val scalaSourceFiles =
FileTreeView.list(Glob("/foo/bar/src/main/scala/**/*.scala"), regularFileFilter)

A Glob may be used as a PathFilter:

val filter: PathFilter = ** / "*include*"
val scalaSourceFiles =
FileTreeView.default.list(Glob("/foo/bar/src/main/scala/**/*.scala"), filter)

Instances of PathFilter can be negated with the ! unary operator:

val hiddenFileFilter: PathFilter = (p, _) => Try(Files.isHidden(p)).getOrElse(false)
val notHiddenFileFilter: PathFilter = !hiddenFileFilter

They can be combined with the && operator:

val regularFileFilter: PathFilter = (_, a) => a.isRegularFile
val notHiddenFileFilter: PathFilter = (p, _) => Try(Files.isHidden(p)).getOrElse(false)
val andFilter = regularFileFilter && notHiddenFileFilter
val scalaSources =
FileTreeView.default.list(Glob("/foo/bar/src/main/scala/**/*.scala"), andFilter)

They can be combined with the || operator:

val scalaSources: PathFilter = ** / "*.scala"
val javaSources: PathFilter = ** / "*.java"
val jvmSourceFilter = scalaSources || javaSources
val jvmSourceFiles =
FileTreeView.default.list(Glob("/foo/bar/src/**"), jvmSourceFilter)

There is also an implicit conversion from String to PathFilter that converts
the String to a Glob and converts the Glob to a PathFilter:

val regularFileFilter: PathFilter = (p, a) => a.isRegularFile
val regularScalaFiles: PathFilter = regularFileFilter && "**/*.scala"

In addition to the ad-hoc filters, there are some commonly used filters that are
available in the default sbt scope:

1. sbt.io.HiddenFileFilter – accepts any file that is hidden according
to Files.isHidden. On posix systems, this will just check if the name
starts with . while on Windows, it will need to perform io to extract the
dos:hidden attribute.

2. sbt.io.RegularFileFilter – equivalent to (_, a: FileAttributes)
=> a.isRegularFile

3. sbt.io.DirectoryFilter – equivalent to (_, a: FileAttributes) =>
a.isDirectory

There is also a converter from sbt.io.FileFilter to sbt.nio.file.PathFilter
that can be invoked by calling toNio on the sbt.io.FileFilter instance:

286

val excludeFilter: sbt.io.FileFilter = HiddenFileFilter || DirectoryFilter
val excludePathFilter: sbt.nio.file.PathFilter = excludeFilter.toNio

The HiddenFileFilter, RegularFileFilter and DirectoryFilter inherit
both sbt.io.FileFilter and sbt.nio.file.PathFilter. They typically can
be treated like a PathFilter:

val regularScalaFiles: PathFilter = RegularFileFilter && (** / "*.scala")

This will not work when the implicit conversion from String to PathFinder is
required.

val regularScalaFiles = RegularFileFilter && "**/*.scala"
// won't compile because it gets interpreted as
// (RegularFileFilter: sbt.io.FileFilter).&&(("**/*.scala"): sbt.io.NameFilter)

In these situations, use toNio:

val regularScalaFiles = RegularFileFilter.toNio && "**/*.scala"

It is important to note that semantics of Glob are different from NameFilter.
When using the sbt.io.FileFilter, in order to filter files ending with the
.scala extension, one would write:

val scalaFilter: NameFilter = "*.scala"

An equivalent PathFilter is written

val scalaFilter: PathFilter = "**/*.scala"

The glob represented "*.scala" matches a path with a single compo-
nent ending in scala. In general, when converting sbt.io.NameFilter to
sbt.nio.file.PathFilter, it will be necessary to add a "**/" prefix.

Streaming

In addition to FileTreeView.list, there is also FileTreeView.iterator. The
latter may be used to reduce memory pressure:

// Prints all of the files on the root file system
FileTreeView.iterator(Glob("/**")).foreach { case (p, _) => println(p) }

In the context of sbt, the type parameter, T, is always (java.nio.file.Path,
sbt.nio.file.FileAttributes). An implementation of FileTreeView is pro-
vided in sbt with the fileTreeView key:

fileTreeView.value.list(baseDirectory.value / ** / "*.txt")

Implementation

The FileTreeView[+T] trait has a single abstract method:

def list(path: Path): Seq[T]

287

sbt only provides implementations of FileTreeView[(Path, FileAttributes)].
In this context, the list method should return the (Path, FileAttributes)
pairs for all of the direct children of the input path.

There are two implementations of FileTreeView[(Path, FileAttribute)]
provided by sbt: 1. FileTreeView.native – this uses a native jni library to
efficiently extract the file names and attributes from the file system without per-
forming additional io. Native implementations are available for 64 bit FreeBSD,
Linux, Mac OS and Windows. If no native implementation is available, it falls
back to a java.nio.file based implementation. 2. FileTreeView.nio – uses
apis in java.nio.file to implement FileTreeView

The FileTreeView.default method returns FileTreeView.native.

The list and iterator methods that take Glob or Seq[Glob] as arguments are
provided as extension methods to FileTreeView[(Path, FileAttributes)].
Since any implementation of FileTreeView[(Path, FileAttributes)] auto-
matically receives these extensions, it is easy to write an alternative implemen-
tation that will still correctly work with Glob and Seq[Glob]:

val listedDirectories = mutable.Set.empty[Path]
val trackingView: FileTreeView[(Path, FileAttributes)] = path => {

val results = FileTreeView.default.list(path)
listedDirectories += path
results

}
val scalaSources =
trackingView.list(Glob("/foo/bar/src/main/scala/**/*.scala")).map(_._1)

println(listedDirectories) // prints all of the directories traversed by list

Globs vs. PathFinder

sbt has long had the PathFinder api which provides a dsl for collecting files.
While there is overlap, Globs are a less powerful abstraction than PathFinder.
This makes them more suitable for optimization. Globs describe the what, but
not the how, of a query. PathFinders combine the what and the how, which
makes them more difficult to optimize. For example, the following sbt snippet:

val paths = fileTreeView.value.list(
baseDirectory.value / ** / "*.scala",
baseDirectory.value / ** / "*.java").map(_._1)

will only traverse the file system once to collect all of the scala and java sources
in the project. By contrast,

val paths =
(baseDirectory.value ** "*.scala" +++
baseDirectory.value ** "*.java").allPaths

will make two passes and will thus take about twice as long to run when com-
pared to the Glob version.

288

Paths.html

Remote Caching

sbt 1.4.0 / Zinc 1.4.0 virtualizes the file paths tracked during incremental com-
pilation, and uses content hash for change detection. With these combination,
we can realize repeatable build, also known as build as function.

This enables experimental remote caching (cached compilation) feature. The
idea is for a team of developers and/or a continuous integration (CI) system to
share build outputs. If the build is repeatable, the output from one machine can
be reused by another machine, which can make the build significantly faster.

Usage

ThisBuild / pushRemoteCacheTo := Some(MavenCache("local-cache", file("/tmp/remote-cache")))

Then from machine 1, call pushRemoteCache. This will publish the *.class
and Zinc Analysis artifacts to the location. Next, from machine 2, call
pullRemoteCache.

Remote caching via Maven repository

As of sbt 1.4.0, we’re reusing the Maven publishing and resolution mechanism
to exchange the cached build outputs. This is likely to easy to get started using
existing infrastructure such as Bintray.

In the future, we might consider simpler cache server like plain HTTP server
that uses PUT and GET. This would require someone to host an HTTP server
somewhere, but provisioning them might become simpler.

ThisBuild / rootPaths

To abstract machine-specific paths such as your working directory and Coursier
cache directory, sbt keeps a map of root paths in ThisBuild / rootPaths. If
your build adds special paths for your source or output directory, add them to
ThisBuild / rootPaths.

If you need to guarantee that ThisBuild / rootPaths contains all necessary
paths you can set ThisBuild / allowMachinePath to false.

remoteCacheId

As of sbt 1.4.2, remoteCacheId uses hash of content hashes for input sources.

289

Dependency Management

This part of the documentation has pages documenting particular sbt topics in
detail. Before reading anything in here, you will need the information in the
Getting Started Guide as a foundation.

Artifacts

Selecting default artifacts

By default, the published artifacts are the main binary jar, a jar containing the
main sources and resources, and a jar containing the API documentation. You
can add artifacts for the test classes, sources, or API or you can disable some
of the main artifacts.

To add all test artifacts:

lazy val app = (project in file("app"))
.settings(
Test / publishArtifact := true,

)

To add them individually:

lazy val app = (project in file("app"))
.settings(
// enable publishing the jar produced by `Test/package`
Test / packageBin / publishArtifact := true,

// enable publishing the test API jar
Test / packageDoc / publishArtifact := true,

// enable publishing the test sources jar
Test / packageSrc / publishArtifact := true,

)

To disable main artifacts individually:

lazy val app = (project in file("app"))
.settings(
// disable publishing the main jar produced by `package`
Compile / packageBin / publishArtifact := false,

// disable publishing the main API jar
Compile / packageDoc / publishArtifact := false,

// disable publishing the main sources jar

290

Getting-Started.html

Compile / packageSrc / publishArtifact := false,
)

Modifying default artifacts

Each built-in artifact has several configurable settings in addition to
publishArtifact. The basic ones are artifact (of type SettingKey[Artifact]),
mappings (of type TaskKey[(File, String)]), and artifactPath (of type
SettingKey[File]). They are scoped by (Config / <task>) as indicated in
the previous section.

To modify the type of the main artifact, for example:

Compile / packageBin / artifact := {
val prev: Artifact = (Compile / packageBin / artifact).value
prev.withType("bundle")

}

The generated artifact name is determined by the artifactName setting. This
setting is of type (ScalaVersion, ModuleID, Artifact) => String. The
ScalaVersion argument provides the full Scala version String and the binary
compatible part of the version String. The String result is the name of the file
to produce. The default implementation is Artifact.artifactName _. The
function may be modified to produce different local names for artifacts without
affecting the published name, which is determined by the artifact definition
combined with the repository pattern.

For example, to produce a minimal name without a classifier or cross path:

artifactName := { (sv: ScalaVersion, module: ModuleID, artifact: Artifact) =>
artifact.name + "-" + module.revision + "." + artifact.extension

}

(Note that in practice you rarely want to drop the classifier.)

Finally, you can get the (Artifact, File) pair for the artifact by mapping the
packagedArtifact task. Note that if you don’t need the Artifact, you can get
just the File from the package task (package, packageDoc, or packageSrc). In
both cases, mapping the task to get the file ensures that the artifact is generated
first and so the file is guaranteed to be up-to-date.

For example:

val myTask = taskKey[Unit]("My task.")

myTask := {
val (art, file) = (Compile / packageBin / packagedArtifact).value
println("Artifact definition: " + art)

291

println("Packaged file: " + file.getAbsolutePath)
}

Defining custom artifacts

In addition to configuring the built-in artifacts, you can declare other artifacts
to publish. Multiple artifacts are allowed when using Ivy metadata, but a Maven
POM file only supports distinguishing artifacts based on classifiers and these
are not recorded in the POM.

Basic Artifact construction look like:

Artifact("name", "type", "extension")
Artifact("name", "classifier")
Artifact("name", url: URL)
Artifact("name", Map("extra1" -> "value1", "extra2" -> "value2"))

For example:

Artifact("myproject", "zip", "zip")
Artifact("myproject", "image", "jpg")
Artifact("myproject", "jdk15")

See the Ivy documentation for more details on artifacts. See the Artifact API
for combining the parameters above and specifying Configurations and extra
attributes.

To declare these artifacts for publishing, map them to the task that generates
the artifact:

val myImageTask = taskKey[File](...)

myImageTask := {
val artifact: File = makeArtifact(...)
artifact

}

addArtifact(Artifact("myproject", "image", "jpg"), myImageTask)

addArtifact returns a sequence of settings (wrapped in a SettingsDefinition).
In a full build configuration, usage looks like:

lazy val app = (project in file("app"))
.settings(
addArtifact(...)

)

292

https://ant.apache.org/ivy/history/2.3.0/ivyfile/dependency-artifact.html
../api/sbt/librarymanagement/Artifact$.html
../api/sbt/internal/util/Init$SettingsDefinition.html

Publishing .war files

A common use case for web applications is to publish the .war file instead of
the .jar file.

lazy val app = (project in file("app"))
.settings(
// disable .jar publishing
Compile / packageBin / publishArtifact := false,

// create an Artifact for publishing the .war file
Compile / packageWar / artifact := {

val prev: Artifact = (Compile / packageWar / artifact).value
prev.withType("war").withExtension("war")

},

// add the .war file to what gets published
addArtifact(Compile / packageWar / artifact, packageWar),

)

Using dependencies with artifacts

To specify the artifacts to use from a dependency that has custom or multiple
artifacts, use the artifacts method on your dependencies. For example:

libraryDependencies += ("org" % "name" % "rev").artifacts(Artifact("name", "type", "ext"))

The from and classifer methods (described on the Library Management page)
are actually convenience methods that translate to artifacts:

def from(url: String) = artifacts(Artifact(name, new URL(url)))
def classifier(c: String) = artifacts(Artifact(name, c))

That is, the following two dependency declarations are equivalent:

libraryDependencies += ("org.testng" % "testng" % "5.7").classifier("jdk15")

libraryDependencies += ("org.testng" % "testng" % "5.7").artifacts(Artifact("testng", "jdk15"))

Dependency Management Flow

There’s a getting started page about library management, which you may want
to read first.

This page explains the relationship between the compile task and library de-
pendency management.

293

Library-Management.html
Library-Dependencies.html

Background

update resolves dependencies according to the settings in a build file, such as
libraryDependencies and resolvers. Other tasks use the output of update
(an UpdateReport) to form various classpaths. Tasks that in turn use these
classpaths, such as compile or run, thus indirectly depend on update. This
means that before compile can run, the update task needs to run. However,
resolving dependencies on every compile would be unnecessarily slow and so
update must be particular about when it actually performs a resolution.

In addition, sbt 1.x introduced the notion of Library Management API (LM
API), which abstracted the notion of library management. As of sbt 1.3.0,
there are two implementations for the LM API: one based on Coursier, and the
other based on Apache Ivy.

Caching and Configuration

1. If no library dependency settings have changed since the last successful
resolution and the retrieved files are still present, sbt does not ask depen-
dency resolver (like Coursier) to perform resolution.

2. Changing the settings, such as adding or removing dependencies or chang-
ing the version or other attributes of a dependency, will automatically
cause resolution to be performed.

3. Directly running the update task (as opposed to a task that depends on
it) will force resolution to run, whether or not configuration changed.

4. Clearing the task cache by running clean will also cause resolution to be
performed.

5. Overriding all of the above, update / skip := true will tell sbt to never
perform resolution. Note that this can cause dependent tasks to fail.

Notes on SNAPSHOTs

Repeatability of the build is paramount, especially when you share the build
with someone else. SNAPSHOT versions are convenient way of locally testing
something, but its use should be limited only to the local machine because it
introduces mutability to the build, which makes it brittle, and the dependency
resolution slower as the publish date must be checked over the network even
when the artifacts are locally cached.

By default, SNAPSHOT artifacts in Coursier are given 24h time-to-live (TTL) to
avoid network IO. If you need to force re-resolution of SNAPSHOTS, run sbt with
COURSIER_TTL environment variable set to 0s.

294

https://get-coursier.io/docs/ttl

Library Management

There’s now a getting started page about library management, which you may
want to read first.

Documentation Maintenance Note: it would be nice to remove the overlap be-
tween this page and the getting started page, leaving this page with the more
advanced topics such as checksums and external Ivy files.

Introduction

There are two ways for you to manage libraries with sbt: manually or auto-
matically. These two ways can be mixed as well. This page discusses the two
approaches. All configurations shown here are settings that go directly in a .sbt
file.

Manual Dependency Management

Manually managing dependencies involves copying any jars that you want to use
to the lib directory. sbt will put these jars on the classpath during compilation,
testing, running, and when using the interpreter. You are responsible for adding,
removing, updating, and otherwise managing the jars in this directory. No
modifications to your project definition are required to use this method unless
you would like to change the location of the directory you store the jars in.

To change the directory jars are stored in, change the unmanagedBase setting
in your project definition. For example, to use custom_lib/:

unmanagedBase := baseDirectory.value / "custom_lib"

If you want more control and flexibility, override the unmanagedJars task, which
ultimately provides the manual dependencies to sbt. The default implementa-
tion is roughly:

Compile / unmanagedJars := (baseDirectory.value ** "*.jar").classpath

If you want to add jars from multiple directories in addition to the default
directory, you can do:

Compile / unmanagedJars ++= {
val base = baseDirectory.value
val baseDirectories = (base / "libA") +++ (base / "b" / "lib") +++ (base / "libC")
val customJars = (baseDirectories ** "*.jar") +++ (base / "d" / "my.jar")
customJars.classpath

}

See Paths for more information on building up paths.

295

Library-Dependencies.html
Basic-Def.html
Basic-Def.html
Paths.html

Automatic Dependency Management

This method of dependency management involves specifying the direct depen-
dencies of your project and letting sbt handle retrieving and updating your
dependencies.

sbt 1.3.0+ uses Coursier to implement dependency management. Until sbt 1.3.0,
sbt has used Apache Ivy for ten years. Coursier does a good job of keeping the
compatibility, but some of the feature might be specific to Apache Ivy. In those
cases, you can use the following setting to switch back to Ivy:

ThisBuild / useCoursier := false

Inline Declarations

Inline declarations are a basic way of specifying the dependencies to be auto-
matically retrieved. They are intended as a lightweight alternative to a full
configuration using Ivy.

Dependencies

Declaring a dependency looks like:

libraryDependencies += groupID % artifactID % revision

or

libraryDependencies += groupID % artifactID % revision % configuration

See configurations for details on configuration mappings. Also, several depen-
dencies can be declared together:

libraryDependencies ++= Seq(
groupID %% artifactID % revision,
groupID %% otherID % otherRevision

)

If you are using a dependency that was built with sbt, double the first % to be
%%:

libraryDependencies += groupID %% artifactID % revision

This will use the right jar for the dependency built with the version of Scala
that you are currently using. If you get an error while resolving this kind of
dependency, that dependency probably wasn’t published for the version of Scala
you are using. See Cross Build for details.

Ivy can select the latest revision of a module according to constraints you specify.
Instead of a fixed revision like "1.6.1", you specify "latest.integration",
"2.9.+", or "[1.0,)". See the Ivy revisions documentation for details.

296

https://get-coursier.io/
Cross-Build.html
https://ant.apache.org/ivy/history/2.3.0/ivyfile/dependency.html#revision

Resolvers

sbt uses the standard Maven2 repository by default.

Declare additional repositories with the form:

resolvers += name at location

For example:

libraryDependencies ++= Seq(
"org.apache.derby" % "derby" % "10.4.1.3",
"org.specs" % "specs" % "1.6.1"

)

resolvers += "Sonatype OSS Snapshots" at "https://oss.sonatype.org/content/repositories/snapshots"

sbt can search your local Maven repository if you add it as a repository:

resolvers += "Local Maven Repository" at "file://"+Path.userHome.absolutePath+"/.m2/repository"

See Resolvers for details on defining other types of repositories.

Override default resolvers

resolvers configures additional, inline user resolvers. By default, sbt combines
these resolvers with default repositories (Maven Central and the local Ivy repos-
itory) to form externalResolvers. To have more control over repositories, set
externalResolvers directly. To only specify repositories in addition to the
usual defaults, configure resolvers.

For example, to use the Sonatype OSS Snapshots repository in addition to the
default repositories,

resolvers += "Sonatype OSS Snapshots" at "https://oss.sonatype.org/content/repositories/snapshots"

To use the local repository, but not the Maven Central repository:

externalResolvers := Resolver.combineDefaultResolvers(resolvers.value.toVector, mavenCentral = false)

Override all resolvers for all builds

The repositories used to retrieve sbt, Scala, plugins, and application dependen-
cies can be configured globally and declared to override the resolvers configured
in a build or plugin definition. There are two parts:

1. Define the repositories used by the launcher.
2. Specify that these repositories should override those in build definitions.

The repositories used by the launcher can be overridden by defining
~/.sbt/repositories, which must contain a [repositories] section
with the same format as the Launcher configuration file. For example:

297

Resolvers.html

[repositories]
local
my-maven-repo: https://example.org/repo
my-ivy-repo: https://example.org/ivy-repo/, [organization]/[module]/[revision]/[type]s/[artifact](-[classifier]).[ext]

A different location for the repositories file may be specified by the
sbt.repository.config system property in the sbt startup script. The
final step is to set sbt.override.build.repos to true to use these repositories
for dependency resolution and retrieval.

Explicit URL

If your project requires a dependency that is not present in a repository, a direct
URL to its jar can be specified as follows:

libraryDependencies += "slinky" % "slinky" % "2.1" from "https://slinky2.googlecode.com/svn/artifacts/2.1/slinky.jar"

The URL is only used as a fallback if the dependency cannot be found through
the configured repositories. Also, the explicit URL is not included in published
metadata (that is, the pom or ivy.xml).

Disable Transitivity

By default, these declarations fetch all project dependencies, transitively. In
some instances, you may find that the dependencies listed for a project aren’t
necessary for it to build. Projects using the Felix OSGI framework, for instance,
only explicitly require its main jar to compile and run. Avoid fetching arti-
fact dependencies with either intransitive() or notTransitive(), as in this
example:

libraryDependencies += "org.apache.felix" % "org.apache.felix.framework" % "1.8.0" intransitive()

Classifiers

You can specify the classifier for a dependency using the classifier method.
For example, to get the jdk15 version of TestNG:

libraryDependencies += "org.testng" % "testng" % "5.7" classifier "jdk15"

For multiple classifiers, use multiple classifier calls:

libraryDependencies +=
"org.lwjgl.lwjgl" % "lwjgl-platform" % lwjglVersion classifier "natives-windows" classifier "natives-linux" classifier "natives-osx"

To obtain particular classifiers for all dependencies transitively, run the
updateClassifiers task. By default, this resolves all artifacts with the
sources or javadoc classifier. Select the classifiers to obtain by configuring
the transitiveClassifiers setting. For example, to only retrieve sources:

transitiveClassifiers := Seq("sources")

298

Exclude Transitive Dependencies

To exclude certain transitive dependencies of a dependency, use the excludeAll
or exclude methods. The exclude method should be used when a pom will
be published for the project. It requires the organization and module name to
exclude. For example,

libraryDependencies +=
"log4j" % "log4j" % "1.2.15" exclude("javax.jms", "jms")

The excludeAll method is more flexible, but because it cannot be represented
in a pom.xml, it should only be used when a pom doesn’t need to be generated.
For example,

libraryDependencies +=
"log4j" % "log4j" % "1.2.15" excludeAll(
ExclusionRule(organization = "com.sun.jdmk"),
ExclusionRule(organization = "com.sun.jmx"),
ExclusionRule(organization = "javax.jms")

)

See ModuleID for API details.

In certain cases a transitive dependency should be excluded from all
dependencies. This can be achieved by setting up ExclusionRules in
excludeDependencies.

excludeDependencies ++= Seq(
// commons-logging is replaced by jcl-over-slf4j
ExclusionRule("commons-logging", "commons-logging")

)

Download Sources

Downloading source and API documentation jars is usually handled by an IDE
plugin. These plugins use the updateClassifiers and updateSbtClassifiers
tasks, which produce an Update-Report referencing these jars.

To have sbt download the dependency’s sources without using an IDE plu-
gin, add withSources() to the dependency definition. For API jars, add
withJavadoc(). For example:

libraryDependencies +=
"org.apache.felix" % "org.apache.felix.framework" % "1.8.0" withSources() withJavadoc()

Note that this is not transitive. Use the update*Classifiers tasks for that.

Extra Attributes

299

../api/sbt/librarymanagement/ModuleID.html

Extra attributes can be specified by passing key/value pairs to the extra
method.

To select dependencies by extra attributes:

libraryDependencies += "org" % "name" % "rev" extra("color" -> "blue")

To define extra attributes on the current project:

projectID := {
val previous = projectID.value
previous.extra("color" -> "blue", "component" -> "compiler-interface")

}

Inline Ivy XML

sbt additionally supports directly specifying the configurations or dependencies
sections of an Ivy configuration file inline. You can mix this with inline Scala
dependency and repository declarations.

For example:

ivyXML :=
<dependencies>
<dependency org="javax.mail" name="mail" rev="1.4.2">
<exclude module="activation"/>

</dependency>
</dependencies>

Ivy Home Directory

By default, sbt uses the standard Ivy home directory location ${user.home}/.ivy2/.
This can be configured machine-wide, for use by both the sbt launcher and
by projects, by setting the system property sbt.ivy.home in the sbt startup
script (described in Setup).

For example:

java -Dsbt.ivy.home=/tmp/.ivy2/ ...

Checksums

sbt (through Ivy) verifies the checksums of downloaded files by default. It also
publishes checksums of artifacts by default. The checksums to use are specified
by the checksums setting.

To disable checksum checking during update:

update / checksums := Nil

To disable checksum creation during artifact publishing:

300

https://ant.apache.org/ivy/history/2.3.0/concept.html#extra
Setup.html
https://ant.apache.org/ivy/history/latest-milestone/concept.html#checksum

publishLocal / checksums := Nil

publish / checksums := Nil

The default value is:

checksums := Seq("sha1", "md5")

Conflict Management

The conflict manager decides what to do when dependency resolution brings in
different versions of the same library. By default, the latest revision is selected.
This can be changed by setting conflictManager, which has type ConflictMan-
ager. See the Ivy documentation for details on the different conflict managers.
For example, to specify that no conflicts are allowed,

conflictManager := ConflictManager.strict

With this set, any conflicts will generate an error. To resolve a conflict, you
must configure a dependency override, which is explained in a later section.

Eviction warning

The following direct dependencies will introduce a conflict on the akka-actor
version because banana-rdf requires akka-actor 2.1.4.

libraryDependencies ++= Seq(
"org.w3" %% "banana-rdf" % "0.4",
"com.typesafe.akka" %% "akka-actor" % "2.3.7",

)

The default conflict manager will select the newer version of akka-actor, 2.3.7.
This can be confirmed in the output of show update, which shows the newer
version as being selected and the older version as evicted.

> show update
[info] compile:

[info] com.typesafe.akka:akka-actor_2.10
[info] - 2.3.7
...
[info] - 2.1.4
...
[info] evicted: true
[info] evictedReason: latest-revision
...
[info] callers: org.w3:banana-rdf_2.10:0.4

301

../api/sbt/librarymanagement/ConflictManager.html
../api/sbt/librarymanagement/ConflictManager.html
https://ant.apache.org/ivy/history/latest-milestone/settings/conflict-managers.html

Furthermore, the binary version compatibility of the akka-actor 2.1.4 and 2.3.7
are not guaranteed since the second segment has bumped up. sbt 0.13.6+ detects
this automatically and prints out the following warning:

[warn] There may be incompatibilities among your library dependencies.
[warn] Here are some of the libraries that were evicted:
[warn] * com.typesafe.akka:akka-actor_2.10:2.1.4 -> 2.3.7
[warn] Run 'evicted' to see detailed eviction warnings

Since akka-actor 2.1.4 and 2.3.7 are not binary compatible, the only way to fix
this is to downgrade your dependency to akka-actor 2.1.4, or upgrade banana-rdf
to use akka-actor 2.3.

Overriding a version

For binary compatible conflicts, sbt provides dependency overrides. They are
configured with the dependencyOverrides setting, which is a set of ModuleIDs.
For example, the following dependency definitions conflict because spark uses
log4j 1.2.16 and scalaxb uses log4j 1.2.17:

libraryDependencies ++= Seq(
"org.spark-project" %% "spark-core" % "0.5.1",
"org.scalaxb" %% "scalaxb" % "1.0.0"

)

The default conflict manager chooses the latest revision of log4j, 1.2.17:

> show update
[info] compile:
[info] log4j:log4j:1.2.17: ...
...
[info] (EVICTED) log4j:log4j:1.2.16
...

To change the version selected, add an override:

dependencyOverrides += "log4j" % "log4j" % "1.2.16"

This will not add a direct dependency on log4j, but will force the revision to be
1.2.16. This is confirmed by the output of show update:

> show update
[info] compile:
[info] log4j:log4j:1.2.16
...

Note: this is an Ivy-only feature and will not be included in a
published pom.xml.

302

Unresolved dependencies error

Adding the following dependency to your project will result to an unresolved
dependencies error of vpp 2.2.1:

libraryDependencies += "org.apache.cayenne.plugins" % "maven-cayenne-plugin" % "3.0.2"

sbt 0.13.6+ will try to reconstruct dependencies tree when it fails to resolve a
managed dependency. This is an approximation, but it should help you figure
out where the problematic dependency is coming from. When possible sbt will
display the source position next to the modules:

[warn] ::
[warn] :: UNRESOLVED DEPENDENCIES ::
[warn] ::
[warn] :: foundrylogic.vpp#vpp;2.2.1: not found
[warn] ::
[warn]
[warn] Note: Unresolved dependencies path:
[warn] foundrylogic.vpp:vpp:2.2.1
[warn] +- org.apache.cayenne:cayenne-tools:3.0.2
[warn] +- org.apache.cayenne.plugins:maven-cayenne-plugin:3.0.2 (/foo/some-test/build.sbt#L28)
[warn] +- d:d_2.10:0.1-SNAPSHOT

Cached resolution

See Cached resolution for performance improvement option.

Publishing

See Publishing for how to publish your project.

Configurations

Ivy configurations are a useful feature for your build when you need custom
groups of dependencies, such as for a plugin. Ivy configurations are essentially
named sets of dependencies. You can read the Ivy documentation for details.

The built-in use of configurations in sbt is similar to scopes in Maven. sbt adds
dependencies to different classpaths by the configuration that they are defined
in. See the description of Maven Scopes for details.

You put a dependency in a configuration by selecting one or more of its con-
figurations to map to one or more of your project’s configurations. The most
common case is to have one of your configurations A use a dependency’s config-
uration B. The mapping for this looks like "A->B". To apply this mapping to a
dependency, add it to the end of your dependency definition:

libraryDependencies += "org.scalatest" %% "scalatest" % "3.2.17" % "test->compile"

303

Cached-Resolution.html
Publishing.html
https://ant.apache.org/ivy/history/2.3.0/tutorial/conf.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope

This says that your project’s "test" configuration uses ScalaTest’s "compile"
configuration. See the Ivy documentation for more advanced mappings. Most
projects published to Maven repositories will use the "compile" configuration.

A useful application of configurations is to group dependencies that are not used
on normal classpaths. For example, your project might use a "js" configuration
to automatically download jQuery and then include it in your jar by modifying
resources. For example:

val JS = config("js") hide

ivyConfigurations += JS

libraryDependencies += "jquery" % "jquery" % "3.2.1" % "js->default" from "https://code.jquery.com/jquery-3.2.1.min.js"

Compile / resources ++= update.value.select(configurationFilter("js"))

The config method defines a new configuration with name "js" and makes it
private to the project so that it is not used for publishing. See Update Report
for more information on selecting managed artifacts.

A configuration without a mapping (no "->") is mapped to "default" or
"compile". The -> is only needed when mapping to a different configuration
than those. The ScalaTest dependency above can then be shortened to:

libraryDependencies += "org.scalatest" %% "scalatest" % "3.2.17" % "test"

Forcing a revision (Not recommended)

Note: Forcing can create logical inconsistencies so it’s no longer recommended.

To say that we prefer the version we’ve specified over the version from indirect
dependencies, use force():

libraryDependencies ++= Seq(
"org.spark-project" %% "spark-core" % "0.5.1",
"log4j" % "log4j" % "1.2.14" force()

)

Note: this is an Ivy-only feature and cannot be included in a published
pom.xml.

Known limitations

Maven support is dependent on Coursier or Ivy’s support for Maven POMs.
Known issues with this support:

• Specifying relativePath in the parent section of a POM will produce an
error.

304

https://ant.apache.org/ivy/history/2.3.0/tutorial/conf.html
Update-Report.html

• Ivy ignores repositories specified in the POM. A workaround is to specify
repositories inline or in an Ivy ivysettings.xml file.

Proxy Repositories

It’s often the case that users wish to set up a maven/ivy proxy repository in-
side their corporate firewall, and have developer sbt instances resolve artifacts
through such a proxy. Let’s detail what exact changes must be made for this
to work.

Overview

The situation arises when many developers inside an organization are attempting
to resolve artifacts. Each developer’s machine will hit the internet and download
an artifact, regardless of whether or not another on the team has already done so.
Proxy repositories provide a single point of remote download for an organization.
In addition to control and security concerns, Proxy repositories are primarily
important for increased speed across a team.

image

There are many good proxy repository solutions out there:

• JFrog Artifactory Open Source
• JFrog Artifactory Pro
• Sonatype Nexus Repository Manager
• Apache Archiva
• CloudRepo

Once you have a proxy repository installed and configured, then it’s time to
configure sbt for your needs. Read the note at the bottom about proxy issues
with ivy repositories.

sbt Configuration

sbt requires configuration in two places to make use of a proxy repository. The
first is the ~/.sbt/repositories file, and the second is the launcher script.

~/.sbt/repositories

The repositories file is an external configuration for the Launcher. The exact
syntax for the configuration file is detailed in the sbt Launcher Configuration.

Here’s an example config:

305

https://jfrog.com/open-source/
https://jfrog.com/artifactory/
http://www.sonatype.org/nexus/
https://archiva.apache.org/
https://www.cloudrepo.io
Launcher-Configuration.html

[repositories]
local
my-ivy-proxy-releases: http://repo.company.com/ivy-releases/, [organization]/[module]/(scala_[scalaVersion]/)(sbt_[sbtVersion]/)[revision]/[type]s/[artifact](-[classifier]).[ext]
my-maven-proxy-releases: http://repo.company.com/maven-releases/

This example configuration has three repositories configured for sbt.

The first resolver is local, and is used so that artifacts pushed using
publishLocal will be seen in other sbt projects.

The second resolver is my-ivy-proxy-releases. This repository is used to
resolve sbt itself from the company proxy repository, as well as any sbt plugins
that may be required. Note that the ivy resolver pattern is important, make
sure that yours matches the one shown or you may not be able to resolve sbt
plugins.

The final resolver is my-maven-proxy-releases. This repository is a proxy for
all standard maven repositories, including maven central.

This repositories file is all that’s required to use a proxy repository. These
repositories will get included first in any sbt build, however you can add some
additional configuration to force the use of the proxy repository instead of other
configurations.

Using credentials for the proxy repository

In case you need to define credentials to connect to your proxy repository, define
an environment variable SBT_CREDENTIALS that points to the file containing
your credentials:

export SBT_CREDENTIALS="$HOME/.ivy2/.credentials"

with file contents

realm=My Nexus Repository Manager
host=my.artifact.repo.net
user=admin
password=admin123

If the above does not work for your system, then another approach is to explicitly
provide the boot credentials via:

-Dsbt.boot.credentials="$HOME/.ivy2/.credentials"

As well as add the credentials to your build file directly:

credentials += Credentials(Path.userHome / ".ivy2" / ".credentials")

Launcher Script

306

The sbt launcher supports two configuration options that allow the usage of
proxy repositories. The first is the sbt.override.build.repos setting and the
second is the sbt.repository.config setting.

sbt.override.build.repos

This setting is used to specify that all sbt project added resolvers should be
ignored in favor of those configured in the repositories configuration. Using
this with a properly configured ~/.sbt/repositories file leads to only your
proxy repository used for builds.

It is specified like so:

-Dsbt.override.build.repos=true

The value defaults to false and must be explicitly enabled.

sbt.repository.config

If you are unable to create a ~/.sbt/repositories file, due to user permission
errors or for convenience of developers, you can modify the sbt start script
directly with the following:

-Dsbt.repository.config=<path-to-your-repo-file>

This is only necessary if users do not already have their own default repository
file.

Proxying Ivy Repositories

The most common mistake made when setting up a proxy repository for sbt is
attempting to merge both maven and ivy repositories into the same proxy repos-
itory. While some repository managers will allow this, it’s not recommended to
do so.

Even if your company does not use ivy, sbt uses a custom layout to handle
binary compatibility constraints of its own plugins. To ensure that these are
resolved correctly, simply set up two virtual/proxy repositories, one for maven
and one for ivy.

Here’s an example setup:

image

NOTE: If using Nexus as the proxy repository, then it is very important that
you set the layout policy to “permissive” for the proxy mapping that you cre-
ate to the upstream repository https://repo.scala-sbt.org/scalasbt/sbt-plugin-
releases. If you do not, Nexus will stop short of proxying the original request to
this url and issue a HTTP 404 in its place and the dependency will not resolve.

307

Publishing

This page describes how to publish your project. Publishing consists of upload-
ing a descriptor, such as an Ivy file or Maven POM, and artifacts, such as a
jar or war, to a repository so that other projects can specify your project as a
dependency.

The publish action is used to publish your project to a remote repository.
To use publishing, you need to specify the repository to publish to and the
credentials to use. Once these are set up, you can run publish.

The publishLocal action is used to publish your project to your Ivy local file
repository, which is usually located at $HOME/.ivy2/local/. You can then use
this project from other projects on the same machine.

Skip publishing

To avoid publishing a project, add the following setting to the subprojects that
you want to skip:

publish / skip := true

Common use case is to prevent publishing of the root project.

Define the repository

To specify the repository, assign a repository to publishTo and optionally set
the publishing style. For example, to upload to Nexus:

publishTo := Some("Sonatype Snapshots Nexus" at "https://oss.sonatype.org/content/repositories/snapshots")

To publish to a local maven repository:

publishTo := Some(MavenCache("local-maven", file("path/to/maven-repo/releases")))

To publish to a local Ivy repository:

publishTo := Some(Resolver.file("local-ivy", file("path/to/ivy-repo/releases")))

If you’re using Maven repositories you will also have to select the right repository
depending on your artifacts: SNAPSHOT versions go to the /snapshot repos-
itory while other versions go to the /releases repository. Doing this selection
can be done by using the value of the isSnapshot SettingKey:

publishTo := {
val nexus = "https://my.artifact.repo.net/"
if (isSnapshot.value)
Some("snapshots" at nexus + "content/repositories/snapshots")

else

308

Some("releases" at nexus + "service/local/staging/deploy/maven2")
}

Publishing locally

The publishLocal task will publish to the “local” Ivy repository. By default,
this is at $HOME/.ivy2/local/. Other builds on the same machine can then
list the project as a dependency. For example, if the project you are publishing
has configuration parameters like:

ThisBuild / organization := "org.me"
ThisBuild / version := "0.1-SNAPSHOT"

name := "My Project"

Then another build on the same machine can depend on it:

libraryDependencies += "org.me" %% "my-project" % "0.1-SNAPSHOT"

The version number you select must end with SNAPSHOT, or you must change the
version number each time you publish to indicate that it’s a changing artifact.

Note: SNAPSHOT dependencies should be avoided beyond local testing since
it makes dependency resolution slower and the build non-repeatable.

Similar to publishLocal, publishM2 task will publish the user’s Maven local
repository. This is at the location specified by $HOME/.m2/settings.xml
or at $HOME/.m2/repository/ by default. Another build would require
Resolver.mavenLocal to resolve out of it:

resolvers += Resolver.mavenLocal

See Resolvers for more details.

Credentials

There are two ways to specify credentials for such a repository.

The first and better way is to load them from a file, for example:

credentials += Credentials(Path.userHome / ".sbt" / ".credentials")

The credentials file is a properties file with keys realm, host, user, and
password. For example:

realm=Sonatype Nexus Repository Manager
host=my.artifact.repo.net
user=admin
password=admin123

The second way is to specify them inline:

309

Resolvers.html

credentials += Credentials("Sonatype Nexus Repository Manager", "my.artifact.repo.net", "admin", "admin123")

NOTE: Credentials matching is done using both: realm and host keys. The
realm key is the HTTP WWW-Authenticate header’s realm directive, which
is part of the response of HTTP servers for HTTP Basic Authentication. For
a given repository, this can be found by reading all the headers received. For
example:

curl -D - my.artifact.repo.net

Cross-publishing

To support multiple incompatible Scala versions, enable cross building and do +
publish (see Cross Build). See Resolvers for other supported repository types.

Overriding the publishing convention

By default sbt will publish your artifact with the binary version of Scala you’re
using. For example if your project is using Scala 2.13.x your example artifact
would be published under example_2.13. This is often what you want, but
if you’re publishing a pure Java artifact or a compiler plugin you’ll want to
change the CrossVersion. See the Cross Build page for more details under the
Overriding the publishing convention section.

Published artifacts

By default, the main binary jar, a sources jar, and a API documentation jar
are published. You can declare other types of artifacts to publish and disable
or modify the default artifacts. See the Artifacts page for details.

Modifying the generated POM

When publishMavenStyle is true, a POM is generated by the makePom ac-
tion and published to the repository instead of an Ivy file. This POM file
may be altered by changing a few settings. Set pomExtra to provide XML
(scala.xml.NodeSeq) to insert directly into the generated pom. For example:

pomExtra := <something></something>

There is also a pomPostProcess setting that can be used to manipulate the final
XML before it is written. It’s type is Node => Node.

pomPostProcess := { (node: Node) =>
...

}

310

https://en.wikipedia.org/wiki/Basic_access_authentication#Server_side
Cross-Build.html
Resolvers.html
Cross-Build.html
Artifacts.html

makePom adds to the POM any Maven-style repositories you have declared. You
can filter these by modifying pomRepositoryFilter, which by default excludes
local repositories. To instead only include local repositories:

pomIncludeRepository := { (repo: MavenRepository) =>
repo.root.startsWith("file:")

}

Version scheme

sbt 1.4.0 adds a new setting called ThisBuild / versionScheme to track ver-
sion scheme of the build:

ThisBuild / versionScheme := Some("early-semver")

The supported values are "early-semver", "pvp", "semver-spec", and
"strict". sbt will include this information into pom.xml and ivy.xml as a
property.

versionScheme

description

Some(“early-semver”)

Early Semantic Versioning that would keep binary compatibility across patch
updates within 0.Y.z (for instance 0.13.0 and 0.13.2). Once it goes 1.0.0, it
follows the regular Semantic Versioning where 1.1.0 is bincompat with 1.0.0.

Some(“semver-spec”)

Semantic Versioning where all 0.y.z are treated as initial development (no bin-
compat guarantees)

Some(“pvp”)

Haskell Package Versioning Policy where X.Y are treated as major version

Some(“strict”)

Requires exact match of version

Resolvers

Maven resolvers

Resolvers for Maven repositories are added as follows:

resolvers +=
"Sonatype OSS Snapshots" at "https://oss.sonatype.org/content/repositories/snapshots"

311

This is the most common kind of user-defined resolvers. The rest of this page
describes how to define other types of repositories.

Local Maven resolvers

Following adds a resolver to the Maven local repository:

resolvers += Resolver.mavenLocal

To add a resolver for a custom location:

resolvers += MavenCache("local-maven", file("path/to/maven-repo/releases"))

Predefined resolvers

A few predefined repositories are available and are listed below

• Resolver.mavenLocal This is the local Maven repository.
• DefaultMavenRepository This is the main Maven repository at https:

//repo1.maven.org/maven2/ and is included by default
• JavaNet2Repository This is the java.net Maven2 Repository at https:

//maven.java.net/content/repositories/public/
• Resolver.sonatypeOssRepos("public") (or “snapshots”, “staging”, “re-

leases”) This is Sonatype OSS Maven Repository at https://oss.sonatype
.org/content/repositories/public, https://s01.oss.sonatype.org/content/r
epositories

• Resolver.typesafeRepo("releases") (or “snapshots”) This is Typesafe
Repository at https://repo.typesafe.com/typesafe/releases

• Resolver.typesafeIvyRepo("releases") (or “snapshots”) This is Type-
safe Ivy Repository at https://repo.typesafe.com/typesafe/ivy-releases

• Resolver.sbtPluginRepo("releases") (or “snapshots”) This is sbt
Community Repository at https://repo.scala-sbt.org/scalasbt/sbt-plugin-
releases

• Resolver.bintrayRepo("owner", "repo") This is the Bintray reposi-
tory at https://dl.bintray.com/%5Bowner%5D/%5Brepo%5D/

• Resolver.jcenterRepo This is the Bintray JCenter repository at https:
//jcenter.bintray.com/

For example, to use the java.net repository, use the following setting in your
build definition:

resolvers += JavaNet2Repository

Predefined repositories will go under Resolver going forward so they are in one
place:

Resolver.sonatypeOssRepos("releases") // Or "snapshots"

312

https://repo1.maven.org/maven2/
https://repo1.maven.org/maven2/
https://maven.java.net/content/repositories/public/
https://maven.java.net/content/repositories/public/
https://oss.sonatype.org/content/repositories/public
https://oss.sonatype.org/content/repositories/public
https://s01.oss.sonatype.org/content/repositories
https://s01.oss.sonatype.org/content/repositories
https://repo.typesafe.com/typesafe/releases
https://repo.typesafe.com/typesafe/ivy-releases
https://repo.scala-sbt.org/scalasbt/sbt-plugin-releases
https://repo.scala-sbt.org/scalasbt/sbt-plugin-releases
https://dl.bintray.com/%5Bowner%5D/%5Brepo%5D/
https://jcenter.bintray.com/
https://jcenter.bintray.com/

Custom resolvers

sbt provides an interface to the repository types available in Ivy: file, URL, SSH,
and SFTP. A key feature of repositories in Ivy is using patterns to configure
repositories.

Construct a repository definition using the factory in sbt.Resolver for the
desired type. This factory creates a Repository object that can be further
configured. The following table contains links to the Ivy documentation for the
repository type and the API documentation for the factory and repository class.
The SSH and SFTP repositories are configured identically except for the name
of the factory. Use Resolver.ssh for SSH and Resolver.sftp for SFTP.

Type

Factory

Ivy Docs

Factory API

Repository Class API

Filesystem

Resolver.file

Ivy filesystem

filesystem factory

FileRepository API

SFTP

Resolver.sftp

Ivy sftp

sftp factory

SftpRepository API

SSH

Resolver.ssh

Ivy ssh

ssh factory

SshRepository API

URL

Resolver.url

313

https://ant.apache.org/ivy/history/latest-milestone/concept.html#patterns

Ivy url

url factory

URLRepository API

Basic Examples

These are basic examples that use the default Maven-style repository layout.

Filesystem

Define a filesystem repository in the test directory of the current working di-
rectory and declare that publishing to this repository must be atomic.

resolvers += Resolver.file("my-test-repo", file("test")) transactional()

URL

Define a URL repository at "https://example.org/repo-releases/".

resolvers += Resolver.url("my-test-repo", url("https://example.org/repo-releases/"))

To specify an Ivy repository, use:

resolvers += Resolver.url("my-test-repo", url)(Resolver.ivyStylePatterns)

or customize the layout pattern described in the Custom Layout section below.

SFTP and SSH Repositories

The following defines a repository that is served by SFTP from host
"example.org":

resolvers += Resolver.sftp("my-sftp-repo", "example.org")

To explicitly specify the port:

resolvers += Resolver.sftp("my-sftp-repo", "example.org", 22)

To specify a base path:

resolvers += Resolver.sftp("my-sftp-repo", "example.org", "maven2/repo-releases/")

Authentication for the repositories returned by sftp and ssh can be configured
by the as methods.

To use password authentication:

resolvers += Resolver.ssh("my-ssh-repo", "example.org") as("user", "password")

or to be prompted for the password:

314

resolvers += Resolver.ssh("my-ssh-repo", "example.org") as("user")

To use key authentication:

resolvers += {
val keyFile: File = ...
Resolver.ssh("my-ssh-repo", "example.org") as("user", keyFile, "keyFilePassword")

}

or if no keyfile password is required or if you want to be prompted for it:

resolvers += Resolver.ssh("my-ssh-repo", "example.org") as("user", keyFile)

To specify the permissions used when publishing to the server:

resolvers += Resolver.ssh("my-ssh-repo", "example.org") withPermissions("0644")

This is a chmod-like mode specification.

Custom Layout

These examples specify custom repository layouts using patterns. The factory
methods accept an Patterns instance that defines the patterns to use. The
patterns are first resolved against the base file or URL. The default patterns
give the default Maven-style layout. Provide a different Patterns object to use
a different layout. For example:

resolvers += Resolver.url("my-test-repo", url)(Patterns("[organisation]/[module]/[revision]/[artifact].[ext]"))

You can specify multiple patterns or patterns for the metadata and artifacts
separately. You can also specify whether the repository should be Maven com-
patible (as defined by Ivy). See the patterns API for the methods to use.

For filesystem and URL repositories, you can specify absolute patterns by omit-
ting the base URL, passing an empty Patterns instance, and using ivys and
artifacts:

resolvers += Resolver.url("my-test-repo") artifacts
"https://example.org/[organisation]/[module]/[revision]/[artifact].[ext]"

Update Report

update and related tasks produce a value of type sbt.UpdateReport This
data structure provides information about the resolved configurations,
modules, and artifacts. At the top level, UpdateReport provides re-
ports of type ConfigurationReport for each resolved configuration. A
ConfigurationReport supplies reports (of type ModuleReport) for each
module resolved for a given configuration. Finally, a ModuleReport lists each
successfully retrieved Artifact and the File it was retrieved to as well as
the Artifacts that couldn’t be downloaded. This missing Artifact list is

315

../api/sbt/librarymanagement/Patterns$.html
../api/sbt/librarymanagement/UpdateReport.html

always empty for update, which will fail if it is non-empty. However, it may be
non-empty for updateClassifiers and updateSbtClassifers.

Filtering a Report and Getting Artifacts

A typical use of UpdateReport is to retrieve a list of files matching a filter.
A conversion of type UpdateReport => RichUpdateReport implicitly provides
these methods for UpdateReport. The filters are defined by the Dependency-
Filter, ConfigurationFilter, ModuleFilter, and ArtifactFilter types. Using these
filter types, you can filter by the configuration name, the module organization,
name, or revision, and the artifact name, type, extension, or classifier.

The relevant methods (implicitly on UpdateReport) are:

def matching(f: DependencyFilter): Seq[File]

def select(configuration: ConfigurationFilter = ...,
module: ModuleFilter = ...,
artifact: ArtifactFilter = ...): Seq[File]

Any argument to select may be omitted, in which case all values are allowed
for the corresponding component. For example, if the ConfigurationFilter
is not specified, all configurations are accepted. The individual filter types are
discussed below.

Filter Basics

Configuration, module, and artifact filters are typically built by applying a
NameFilter to each component of a Configuration, ModuleID, or Artifact.
A basic NameFilter is implicitly constructed from a String, with * interpreted
as a wildcard.

import sbt._
// each argument is of type NameFilter
val mf: ModuleFilter = moduleFilter(organization = "*sbt*",
name = "main" | "actions", revision = "1.*" - "1.0")

// unspecified arguments match everything by default
val mf: ModuleFilter = moduleFilter(organization = "net.databinder")

// specifying "*" is the same as omitting the argument
val af: ArtifactFilter = artifactFilter(name = "*", `type` = "source",
extension = "jar", classifier = "sources")

val cf: ConfigurationFilter = configurationFilter(name = "compile" | "test")

316

../api/sbt/librarymanagement/DependencyFilter.html
../api/sbt/librarymanagement/DependencyFilter.html
../api/sbt/librarymanagement/ConfigurationFilter.html
../api/sbt/librarymanagement/ModuleFilter.html
../api/sbt/librarymanagement/ArtifactFilter.html

Alternatively, these filters, including a NameFilter, may be directly defined by
an appropriate predicate (a single-argument function returning a Boolean).

import sbt._

// here the function value of type String => Boolean is implicitly converted to a NameFilter
val nf: NameFilter = (s: String) => s.startsWith("dispatch-")

// a Set[String] is a function String => Boolean
val acceptConfigs: Set[String] = Set("compile", "test")
// implicitly converted to a ConfigurationFilter
val cf: ConfigurationFilter = acceptConfigs

val mf: ModuleFilter = (m: ModuleID) => m.organization contains "sbt"

val af: ArtifactFilter = (a: Artifact) => a.classifier.isEmpty

ConfigurationFilter

A configuration filter essentially wraps a NameFilter and is explicitly con-
structed by the configurationFilter method:

def configurationFilter(name: NameFilter = ...): ConfigurationFilter

If the argument is omitted, the filter matches all configurations. Functions of
type String => Boolean are implicitly convertible to a ConfigurationFilter.
As with ModuleFilter, ArtifactFilter, and NameFilter, the &, |, and -
methods may be used to combine ConfigurationFilters.

import sbt._
val a: ConfigurationFilter = Set("compile", "test")
val b: ConfigurationFilter = (c: String) => c.startsWith("r")
val c: ConfigurationFilter = a | b

(The explicit types are optional here.)

ModuleFilter

A module filter is defined by three NameFilters: one for the organization, one for
the module name, and one for the revision. Each component filter must match
for the whole module filter to match. A module filter is explicitly constructed
by the moduleFilter method:

def moduleFilter(organization: NameFilter = ..., name: NameFilter = ..., revision: NameFilter = ...): ModuleFilter

An omitted argument does not contribute to the match. If all argu-
ments are omitted, the filter matches all ModuleIDs. Functions of type
ModuleID => Boolean are implicitly convertible to a ModuleFilter. As with

317

ConfigurationFilter, ArtifactFilter, and NameFilter, the &, |, and -
methods may be used to combine ModuleFilters:

import sbt._
val a: ModuleFilter = moduleFilter(name = "dispatch-twitter", revision = "0.7.8")
val b: ModuleFilter = moduleFilter(name = "dispatch-*")
val c: ModuleFilter = b - a

(The explicit types are optional here.)

ArtifactFilter

An artifact filter is defined by four NameFilters: one for the name, one for the
type, one for the extension, and one for the classifier. Each component filter
must match for the whole artifact filter to match. An artifact filter is explicitly
constructed by the artifactFilter method:

def artifactFilter(name: NameFilter = ..., `type`: NameFilter = ...,
extension: NameFilter = ..., classifier: NameFilter = ...): ArtifactFilter

Functions of type Artifact => Boolean are implicitly convertible to
an ArtifactFilter. As with ConfigurationFilter, ModuleFilter, and
NameFilter, the &, |, and - methods may be used to combine ArtifactFilters:

import sbt._
val a: ArtifactFilter = artifactFilter(classifier = "javadoc")
val b: ArtifactFilter = artifactFilter(`type` = "jar")
val c: ArtifactFilter = b - a

(The explicit types are optional here.)

DependencyFilter

A DependencyFilter is typically constructed by combining other DependencyFilters
together using &&, ||, and --. Configuration, module, and artifact fil-
ters are DependencyFilters themselves and can be used directly as a
DependencyFilter or they can build up a DependencyFilter. Note that
the symbols for the DependencyFilter combining methods are doubled up
to distinguish them from the combinators of the more specific filters for
configurations, modules, and artifacts. These double-character methods will
always return a DependencyFilter, whereas the single character methods
preserve the more specific filter type. For example:

import sbt._

val df: DependencyFilter =
configurationFilter(name = "compile" | "test") &&
artifactFilter(`type` = "jar") ||
moduleFilter(name = "dispatch-*")

318

Here, we used && and || to combine individual component filters into a depen-
dency filter, which can then be provided to the UpdateReport.matches method.
Alternatively, the UpdateReport.select method may be used, which is equiv-
alent to calling matches with its arguments combined with &&.

Cached Resolution

Cached Resolution is an experimental feature of sbt added since 0.13.7 to
address the scalability performance of dependency resolution.

Setup

To set up Cached Resolution include the following setting in your project’s build:

updateOptions := updateOptions.value.withCachedResolution(true)

Dependency as a graph

A project declares its own library dependency using libraryDependencies set-
ting. The libraries you added also bring in their transitive dependencies. For
example, your project may depend on dispatch-core 0.11.2; dispatch-core 0.11.2
depends on async-http-client 1.8.10; async-http-client 1.8.10 depends on netty
3.9.2.Final, and so forth. If we think of each library to be a node with arrows
going out to dependent nodes, we can think of the entire dependencies to be a
graph – specifically a directed acyclic graph.

This graph-like structure, which was adopted from Apache Ivy, allows us to
define override rules and exclusions transitively, but as the number of the node
increases, the time it takes to resolve dependencies grows significantly. See
Motivation section later in this page for the full description.

Cached Resolution

The Cached Resolution feature is akin to incremental compilation, which only
recompiles the sources that have been changed since the last compile. Unlike
the Scala compiler, Ivy does not have the concept of separate compilation, so
that needed to be implemented.

Instead of resolving the full dependency graph, the Cached Resolution feature
creates minigraphs – one for each direct dependency appearing in all related sub-
projects. These minigraphs are resolved using Ivy’s resolution engine, and the
result is stored locally under $HOME/.sbt/1.0/dependency/ (or what’s specified
by sbt.dependency.base flag) shared across all builds. After all minigraphs are

319

https://en.wikipedia.org/wiki/Directed_acyclic_graph
Library-Management.html

resolved, they are stitched together by applying the conflict resolution algorithm
(typically picking the latest version).

When you add a new library to your project, Cached Resolution feature will
check for the minigraph files under $HOME/.sbt/1.0/dependency/ and load
the previously resolved nodes, which incurs negligible I/O overhead, and only
resolve the newly added library. The intended performance improvement is that
the second and third subprojects can take advantage of the resolved minigraphs
from the first one and avoid duplicated work. The following figure illustrates
projects A, B, and C, all hitting the same set of json files.

fig1

The actual speedup will vary case by case, but you should see significant speedup
if you have many subprojects. An initial report from a user showed a change
from 260s to 25s. Your mileage may vary.

Caveats and known issues

Cached Resolution is an experimental feature, and you might run into some
issues. When you see them please report to GitHub Issue or sbt-dev list.

First runs

The first time you run, Cached Resolution will likely be slow since it needs to
resolve all minigraphs and save the result into the filesystem. Whenever you
add a new node the system has not seen, it will save the minigraph. The second
run onwards should be faster, but comparing full-resolution update with second
run onwards might not be a fair comparison.

Ivy fidelity is not guaranteed

Some of the Ivy behavior doesn’t make sense, especially around Maven emula-
tion. For example, it seems to treat all transitive dependencies introduced by
Maven-published library as force() even when the original pom.xml doesn’t
say to:

$ cat ~/.ivy2/cache/com.ning/async-http-client/ivy-1.8.10.xml | grep netty
<dependency org="io.netty" name="netty" rev="3.9.2.Final" force="true" conf="compile->compile(*),master(*);runtime->runtime(*)"/>

There are also some issues around multiple dependencies to the same library
with different Maven classifiers. In these cases, reproducing the exact result as
normal update may not make sense or is downright impossible.

SNAPSHOT and dynamic dependencies

320

https://maven.apache.org/pom.html#Maven_Coordinates

When a minigraph contains either a SNAPSHOT or dynamic dependency, the
graph is considered dynamic, and it will be invalidated after a single task exe-
cution. Therefore, if you have any SNAPSHOT in your graph, your experience
may degrade. (This could be improved in the future)

A setting key called updateOptions customizes the details of managed
dependency resolution with the update task. One of its flags is called
latestSnapshots, which controls the behavior of the chained resolver. Up
until 0.13.6, sbt was picking the first -SNAPSHOT revision it found along the
chain. When latestSnapshots is enabled (default: true), it will look into all
resolvers on the chain, and compare them using the publish date.

The tradeoff is probably a longer resolution time if you have many remote repos-
itories on the build or you live away from the severs. So here’s how to disable
it:

updateOptions := updateOptions.value.withLatestSnapshots(false)

Motivation

sbt internally uses Apache Ivy to resolve library dependencies. While sbt has
benefited from not having to reinvent its own dependency resolution engine
all these years, we are increasingly seeing scalability challenges especially for
projects with both multiple subprojects and large dependency graph. There are
several factors involved in sbt’s resolution scalability:

• Number of transitive nodes (libraries) in the graph
• Exclusion and override rules
• Number of subprojects
• Configurations
• Number of repositories and their availability
• Classifiers (additional sources and docs used by IDE)

Of the above factors, the one that has the most impact is the number of transi-
tive nodes.

1. The more nodes there are the greater the chance of version conflicts. Con-
flicts are resolved typically by picking the latest version within the same
library.

2. The more nodes there are, the more it needs to backtrack to check for
exclusion and override rules.

Exclusion and override rules are applied transitively, so any time a new node is
introduced to the graph it needs to check its parent node’s rules, its grandparent
node’s rules, great-grandparent node’s rules, etc.

sbt treats configurations and subprojects to be independent dependency graph.
This allows us to include arbitrary libraries for different configurations and sub-
projects, but if the dependency resolution is slow, the linear scaling starts to

321

hurt. There have been prior efforts to cache the result of library dependencies,
but it still resulted in full resolution when libraryDependencies has changed.

Tasks and Commands

This part of the documentation has pages documenting particular sbt topics in
detail. Before reading anything in here, you will need the information in the
Getting Started Guide as a foundation.

Tasks

Tasks and settings are introduced in the getting started guide, which you may
wish to read first. This page has additional details and background and is
intended more as a reference.

Introduction

Both settings and tasks produce values, but there are two major differences
between them:

1. Settings are evaluated at project load time. Tasks are executed on demand,
often in response to a command from the user.

2. At the beginning of project loading, settings and their dependencies are
fixed. Tasks can introduce new tasks during execution, however.

Features

There are several features of the task system:

1. By integrating with the settings system, tasks can be added, removed, and
modified as easily and flexibly as settings.

2. Input Tasks use parser combinators to define the syntax for their argu-
ments. This allows flexible syntax and tab-completions in the same way
as Commands.

3. Tasks produce values. Other tasks can access a task’s value by calling
value on it within a task definition.

4. Dynamically changing the structure of the task graph is possible. Tasks
can be injected into the execution graph based on the result of another
task.

5. There are ways to handle task failure, similar to try/catch/finally.
6. Each task has access to its own Logger that by default persists the logging

for that task at a more verbose level than is initially printed to the screen.

These features are discussed in detail in the following sections.

322

Getting-Started.html
Basic-Def.html
Input-Tasks.html
Parsing-Input.html
Commands.html

Defining a Task

Hello World example (sbt)

build.sbt:

lazy val hello = taskKey[Unit]("Prints 'Hello World'")

hello := println("hello world!")

Run “sbt hello” from command line to invoke the task. Run “sbt tasks” to see
this task listed.

Define the key

To declare a new task, define a lazy val of type TaskKey:

lazy val sampleTask = taskKey[Int]("A sample task.")

The name of the val is used when referring to the task in Scala code and at
the command line. The string passed to the taskKey method is a description
of the task. The type parameter passed to taskKey (here, Int) is the type of
value produced by the task.

We’ll define a couple of other keys for the examples:

lazy val intTask = taskKey[Int]("An int task")
lazy val stringTask = taskKey[String]("A string task")

The examples themselves are valid entries in a build.sbt or can be provided
as part of a sequence to Project.settings (see .scala build definition).

Implement the task

There are three main parts to implementing a task once its key is defined:

1. Determine the settings and other tasks needed by the task. They are the
task’s inputs.

2. Define the code that implements the task in terms of these inputs.
3. Determine the scope the task will go in.

These parts are then combined just like the parts of a setting are combined.

Defining a basic task

A task is defined using :=

intTask := 1 + 2

stringTask := System.getProperty("user.name")

323

Full-Def.html

sampleTask := {
val sum = 1 + 2
println("sum: " + sum)
sum

}

As mentioned in the introduction, a task is evaluated on demand. Each time
sampleTask is invoked, for example, it will print the sum. If the username
changes between runs, stringTask will take different values in those separate
runs. (Within a run, each task is evaluated at most once.) In contrast, settings
are evaluated once on project load and are fixed until the next reload.

Tasks with inputs

Tasks with other tasks or settings as inputs are also defined using :=. The values
of the inputs are referenced by the value method. This method is special syntax
and can only be called when defining a task, such as in the argument to :=. The
following defines a task that adds one to the value produced by intTask and
returns the result.

sampleTask := intTask.value + 1

Multiple settings are handled similarly:

stringTask := "Sample: " + sampleTask.value + ", int: " + intTask.value

Task Scope

As with settings, tasks can be defined in a specific scope. For example, there are
separate compile tasks for the compile and test scopes. The scope of a task is
defined the same as for a setting. In the following example, Test/sampleTask
uses the result of Compile/intTask.

Test / sampleTask := (Compile / intTask).value * 3

On precedence

As a reminder, infix method precedence is by the name of the method and
postfix methods have lower precedence than infix methods.

1. Assignment methods have the lowest precedence. These are methods with
names ending in =, except for !=, <=, >=, and names that start with =.

2. Methods starting with a letter have the next highest precedence.
3. Methods with names that start with a symbol and aren’t included in

1. have the highest precedence. (This category is divided further accord-
ing to the specific character it starts with. See the Scala specification
for details.)

Therefore, the previous example is equivalent to the following:

324

(Test / sampleTask).:=((Compile / intTask).value * 3)

Additionally, the braces in the following are necessary:

helloTask := { "echo Hello" ! }

Without them, Scala interprets the line as (helloTask.:=("echo Hello")
).! instead of the desired helloTask.:=("echo Hello".!).

Separating implementations

The implementation of a task can be separated from the binding. For example,
a basic separate definition looks like:

// Define a new, standalone task implemention
lazy val intTaskImpl: Initialize[Task[Int]] =

Def.task { sampleTask.value - 3 }

// Bind the implementation to a specific key
intTask := intTaskImpl.value

Note that whenever .value is used, it must be within a task definition, such as
within Def.task above or as an argument to :=.

Modifying an Existing Task

In the general case, modify a task by declaring the previous task as an input.

// initial definition
intTask := 3

// overriding definition that references the previous definition
intTask := intTask.value + 1

Completely override a task by not declaring the previous task as an input. Each
of the definitions in the following example completely overrides the previous one.
That is, when intTask is run, it will only print #3.

intTask := {
println("#1")
3

}

intTask := {
println("#2")
5

}

intTask := {

325

println("#3")
sampleTask.value - 3

}

Getting values from multiple scopes

Introduction

The general form of an expression that gets values from multiple scopes is:

<setting-or-task>.all(<scope-filter>).value

NOTE! Make sure to assign the ScopeFilter as a val! This is an implemen-
tation detail requirement of the .all macro.

The all method is implicitly added to tasks and settings. It accepts a
ScopeFilter that will select the Scopes. The result has type Seq[T], where T
is the key’s underlying type.

Example

A common scenario is getting the sources for all subprojects for processing all
at once, such as passing them to scaladoc. The task that we want to obtain
values for is sources and we want to get the values in all non-root projects and
in the Compile configuration. This looks like:

lazy val core = project

lazy val util = project

val filter = ScopeFilter(inProjects(core, util), inConfigurations(Compile))

lazy val root = project.settings(
sources := {

// each sources definition is of type Seq[File],
// giving us a Seq[Seq[File]] that we then flatten to Seq[File]
val allSources: Seq[Seq[File]] = sources.all(filter).value
allSources.flatten

}
)

The next section describes various ways to construct a ScopeFilter.

ScopeFilter

A basic ScopeFilter is constructed by the ScopeFilter.apply method.
This method makes a ScopeFilter from filters on the parts of a Scope: a

326

ProjectFilter, ConfigurationFilter, and TaskFilter. The simplest case
is explicitly specifying the values for the parts:

val filter: ScopeFilter =
ScopeFilter(

inProjects(core, util),
inConfigurations(Compile, Test)

)

Unspecified filters

If the task filter is not specified, as in the example above, the default is to select
scopes without a specific task (global). Similarly, an unspecified configuration
filter will select scopes in the global configuration. The project filter should
usually be explicit, but if left unspecified, the current project context will be
used.

More on filter construction

The example showed the basic methods inProjects and inConfigurations.
This section describes all methods for constructing a ProjectFilter,
ConfigurationFilter, or TaskFilter. These methods can be organized into
four groups:

• Explicit member list (inProjects, inConfigurations, inTasks)
• Global value (inGlobalProject, inGlobalConfiguration, inGlobalTask)
• Default filter (inAnyProject, inAnyConfiguration, inAnyTask)
• Project relationships (inAggregates, inDependencies)

See the API documentation for details.

Combining ScopeFilters

ScopeFilters may be combined with the &&, ||, --, and - methods:

• a && b Selects scopes that match both a and b
• a || b Selects scopes that match either a or b
• a -- b Selects scopes that match a but not b
• -b Selects scopes that do not match b

For example, the following selects the scope for the Compile and Test configu-
rations of the core project and the global configuration of the util project:

val filter: ScopeFilter =
ScopeFilter(inProjects(core), inConfigurations(Compile, Test)) ||
ScopeFilter(inProjects(util), inGlobalConfiguration)

327

../api/sbt/ScopeFilter$$Make.html

More operations

The all method applies to both settings (values of type Initialize[T]) and
tasks (values of type Initialize[Task[T]]). It returns a setting or task that
provides a Seq[T], as shown in this table:

Target

Result

Initialize[T]

Initialize[Seq[T]]

Initialize[Task[T]]

Initialize[Task[Seq[T]]]

This means that the all method can be combined with methods that construct
tasks and settings.

Missing values

Some scopes might not define a setting or task. The ? and ?? methods can
help in this case. They are both defined on settings and tasks and indicate what
to do when a key is undefined.

?

On a setting or task with underlying type T, this accepts no arguments and
returns a setting or task (respectively) of type Option[T]. The result is None if
the setting/task is undefined and Some[T] with the value if it is.

??

On a setting or task with underlying type T, this accepts an argument of type
T and uses this argument if the setting/task is undefined.

The following contrived example sets the maximum errors to be the maximum
of all aggregates of the current project.

// select the transitive aggregates for this project, but not the project itself
val filter: ScopeFilter =

ScopeFilter(inAggregates(ThisProject, includeRoot=false))

maxErrors := {
// get the configured maximum errors in each selected scope,
// using 0 if not defined in a scope
val allVersions: Seq[Int] =

(maxErrors ?? 0).all(filter).value
allVersions.max

}

328

Multiple values from multiple scopes

The target of all is any task or setting, including anonymous ones. This means
it is possible to get multiple values at once without defining a new task or
setting in each scope. A common use case is to pair each value obtained with
the project, configuration, or full scope it came from.

• resolvedScoped: Provides the full enclosing ScopedKey (which is a Scope
+ AttributeKey[_])

• thisProject: Provides the Project associated with this scope (undefined
at the global and build levels)

• thisProjectRef: Provides the ProjectRef for the context (undefined at
the global and build levels)

• configuration: Provides the Configuration for the context (undefined
for the global configuration)

For example, the following defines a task that prints non-Compile configurations
that define sbt plugins. This might be used to identify an incorrectly configured
build (or not, since this is a fairly contrived example):

// Select all configurations in the current project except for Compile
lazy val filter: ScopeFilter = ScopeFilter(

inProjects(ThisProject),
inAnyConfiguration -- inConfigurations(Compile)

)

// Define a task that provides the name of the current configuration
// and the set of sbt plugins defined in the configuration
lazy val pluginsWithConfig: Initialize[Task[(String, Set[String])]] =

Def.task {
(configuration.value.name, definedSbtPlugins.value)

}

checkPluginsTask := {
val oddPlugins: Seq[(String, Set[String])] =

pluginsWithConfig.all(filter).value
// Print each configuration that defines sbt plugins
for((config, plugins) <- oddPlugins if plugins.nonEmpty)

println(s"$config defines sbt plugins: ${plugins.mkString(", ")}")
}

Advanced Task Operations

The examples in this section use the task keys defined in the previous section.

Streams: Per-task logging

329

Per-task loggers are part of a more general system for task-specific data called
Streams. This allows controlling the verbosity of stack traces and logging indi-
vidually for tasks as well as recalling the last logging for a task. Tasks also have
access to their own persisted binary or text data.

To use Streams, get the value of the streams task. This is a special task that
provides an instance of TaskStreams for the defining task. This type provides
access to named binary and text streams, named loggers, and a default logger.
The default Logger, which is the most commonly used aspect, is obtained by
the log method:

myTask := {
val s: TaskStreams = streams.value
s.log.debug("Saying hi...")
s.log.info("Hello!")

}

You can scope logging settings by the specific task’s scope:

myTask / logLevel := Level.Debug

myTask / traceLevel := 5

To obtain the last logging output from a task, use the last command:

$ last myTask
[debug] Saying hi...
[info] Hello!

The verbosity with which logging is persisted is controlled using the
persistLogLevel and persistTraceLevel settings. The last command
displays what was logged according to these levels. The levels do not affect
already logged information.

Conditional task

(Requires sbt 1.4.0+)

When Def.task { ... } consists of an if-expression at the top-level, a condi-
tional task (or Selective task) is automatically created:

bar := {
if (number.value < 0) negAction.value
else if (number.value == 0) zeroAction.value
else posAction.value

}

Unlike the regular (Applicative) task composition, conditional tasks delays
the evaluation of then-clause and else-clause as naturally expected of an

330

../api/sbt/std/TaskStreams.html
../api/sbt/util/Logger.html

if-expression. This is already possible with Def.taskDyn { ... }, but unlike
dynamic tasks, conditional task works with inspect command.

Dynamic Computations with Def.taskDyn

It can be useful to use the result of a task to determine the next tasks to evaluate.
This is done using Def.taskDyn. The result of taskDyn is called a dynamic task
because it introduces dependencies at runtime. The taskDyn method supports
the same syntax as Def.task and := except that you return a task instead of a
plain value.

For example,

val dynamic = Def.taskDyn {
// decide what to evaluate based on the value of `stringTask`
if(stringTask.value == "dev")
// create the dev-mode task: this is only evaluated if the
// value of stringTask is "dev"
Def.task {
3

}
else
// create the production task: only evaluated if the value
// of the stringTask is not "dev"
Def.task {
intTask.value + 5

}
}

myTask := {
val num = dynamic.value
println(s"Number selected was $num")

}

The only static dependency of myTask is stringTask. The dependency on
intTask is only introduced in non-dev mode.

Note: A dynamic task cannot refer to itself or a circular depen-
dency will result. In the example above, there would be a circular
dependency if the code passed to taskDyn referenced myTask.

Using Def.sequential

sbt 0.13.8 added Def.sequential function to run tasks under semi-sequential
semantics. This is similar to the dynamic task, but easier to define. To
demonstrate the sequential task, let’s create a custom task called compilecheck

331

that runs Compile / compile and then Compile / scalastyle task added by
scalastyle-sbt-plugin.

lazy val compilecheck = taskKey[Unit]("compile and then scalastyle")

lazy val root = (project in file("."))
.settings(
Compile / compilecheck := Def.sequential(
Compile / compile,
(Compile / scalastyle).toTask("")

).value
)

To call this task type in compilecheck from the shell. If the compilation fails,
compilecheck would stop the execution.

root> compilecheck
[info] Compiling 1 Scala source to /Users/x/proj/target/scala-2.10/classes...
[error] /Users/x/proj/src/main/scala/Foo.scala:3: Unmatched closing brace '}' ignored here
[error] }
[error] ^
[error] one error found
[error] (compile:compileIncremental) Compilation failed

Handling Failure

This section discusses the failure, result, and andFinally methods, which
are used to handle failure of other tasks.

failure

The failure method creates a new task that returns the Incomplete value
when the original task fails to complete normally. If the original task succeeds,
the new task fails. Incomplete is an exception with information about any
tasks that caused the failure and any underlying exceptions thrown during task
execution.

For example:

intTask := sys.error("Failed.")

intTask := {
println("Ignoring failure: " + intTask.failure.value)
3

}

This overrides the intTask so that the original exception is printed and the
constant 3 is returned.

332

http://www.scalastyle.org/sbt.html
../api/sbt/Incomplete.html

failure does not prevent other tasks that depend on the target from failing.
Consider the following example:

intTask := if(shouldSucceed) 5 else sys.error("Failed.")

// Return 3 if intTask fails. If intTask succeeds, this task will fail.
aTask := intTask.failure.value - 2

// A new task that increments the result of intTask.
bTask := intTask.value + 1

cTask := aTask.value + bTask.value

The following table lists the results of each task depending on the initially in-
voked task:

invoked task

intTask result

aTask result

bTask result

cTask result

overall result

intTask

failure

not run

not run

not run

failure

aTask

failure

success

not run

not run

success

bTask

failure

not run

333

failure

not run

failure

cTask

failure

success

failure

failure

failure

intTask

success

not run

not run

not run

success

aTask

success

failure

not run

not run

failure

bTask

success

not run

success

not run

success

cTask

success

failure

success

334

failure

failure

The overall result is always the same as the root task (the directly invoked task).
A failure turns a success into a failure, and a failure into an Incomplete. A
normal task definition fails when any of its inputs fail and computes its value
otherwise.

result

The result method creates a new task that returns the full Result[T] value
for the original task. Result has the same structure as Either[Incomplete,
T] for a task result of type T. That is, it has two subtypes:

• Inc, which wraps Incomplete in case of failure
• Value, which wraps a task’s result in case of success.

Thus, the task created by result executes whether or not the original task
succeeds or fails.

For example:

intTask := sys.error("Failed.")

intTask := {
intTask.result.value match {

case Inc(inc: Incomplete) =>
println("Ignoring failure: " + inc)
3

case Value(v) =>
println("Using successful result: " + v)
v

}
}

This overrides the original intTask definition so that if the original task fails,
the exception is printed and the constant 3 is returned. If it succeeds, the value
is printed and returned.

andFinally

The andFinally method defines a new task that runs the original task and
evaluates a side effect regardless of whether the original task succeeded. The
result of the task is the result of the original task. For example:

intTask := sys.error("I didn't succeed.")

lazy val intTaskImpl = intTask andFinally { println("andFinally") }

335

../api/sbt/Result.html

intTask := intTaskImpl.value

This modifies the original intTask to always print “andFinally” even if the task
fails.

Note that andFinally constructs a new task. This means that the new task has
to be invoked in order for the extra block to run. This is important when calling
andFinally on another task instead of overriding a task like in the previous
example. For example, consider this code:

intTask := sys.error("I didn't succeed.")

lazy val intTaskImpl = intTask andFinally { println("andFinally") }

otherIntTask := intTaskImpl.value

If intTask is run directly, otherIntTask is never involved in execution. This
case is similar to the following plain Scala code:

def intTask(): Int =
sys.error("I didn't succeed.")

def otherIntTask(): Int =
try { intTask() }
finally { println("finally") }

intTask()

It is obvious here that calling intTask() will never result in “finally” being
printed.

Caching

Tasks and settings are introduced in the getting started guide, and explained in
more detail in Tasks. You may wish to read them first.

When you define a custom task, you might want to cache the value to avoid
unnecessary work.

Cache.cached

sbt.util.Cache provides a basic caching facility:

package sbt.util

/**
* A simple cache with keys of type `I` and values of type `O`

336

Basic-Def.html
Tasks.html

*/
trait Cache[I, O] {

/**
* Queries the cache backed with store `store` for key `key`.
*/

def apply(store: CacheStore)(key: I): CacheResult[O]
}

We can derive the instances of Cache[I, O] from sjsonnew.JsonFormat in-
stances for both I and O by importing sbt.util.CacheImplicits._ (This also
brings in BasicJsonProtocol).

To use the cache, we can create a cached function by calling Cache.cached
with a CacheStore (or a file) and a function that does the actual work. Nor-
mally, the cache store would be created as streams.value.cacheStoreFactory
/ "something". In the following REPL example, I will create a cache store from
a temp file.

scala> import sbt._, sbt.util.CacheImplicits._
import sbt._
import sbt.util.CacheImplicits._

scala> def doWork(i: Int): List[String] = {
println("working...")
Thread.sleep(1000)
List.fill(i)("foo")

}
doWork: (i: Int)List[String]

// use streams.value.cacheStoreFactory.make("something") for real tasks
scala> val store = sbt.util.CacheStore(file("/tmp/something"))
store: sbt.util.CacheStore = sbt.util.FileBasedStore@5a4a6716

scala> val cachedWork: Int => List[String] = Cache.cached(store)(doWork)
cachedWork: Int => List[String] = sbt.util.Cache$$$Lambda$5577/1548870528@3bb59fba

scala> cachedWork(1)
working...
res0: List[String] = List(foo)

scala> cachedWork(1)
res1: List[String] = List(foo)

scala> cachedWork(3)
working...
res2: List[String] = List(foo, foo, foo)

337

scala> cachedWork(1)
working...
res3: List[String] = List(foo)

As you can see, cachedWork(1) is cached when it is called consecutively.

Previous value

TaskKey has a method called previous that returns Option[A], which can be
used a lightweight tracker. Suppose we would want to create a task where it
initially returns "hi", and append "!" for subsequent calls, you can define a
TaskKey[String] called hi, and retrieve its previous value, which would be
typed Option[String]. The previous value would be None the first time, and
Some(x) for the subsequent calls.

lazy val hi = taskKey[String]("say hi again")
hi := {

import sbt.util.CacheImplicits._
val prev = hi.previous
prev match {

case None => "hi"
case Some(x) => x + "!"

}
}

We can test this by running show hi from the sbt shell:

sbt:hello> show hi
[info] hi
[success] Total time: 0 s, completed Aug 16, 2019 12:24:32 AM
sbt:hello> show hi
[info] hi!
[success] Total time: 0 s, completed Aug 16, 2019 12:24:33 AM
sbt:hello> show hi
[info] hi!!
[success] Total time: 0 s, completed Aug 16, 2019 12:24:34 AM
sbt:hello> show hi
[info] hi!!!
[success] Total time: 0 s, completed Aug 16, 2019 12:24:35 AM

For each call hi.previous contains the previous result from evaluating hi.

Tracked.lastOutput

sbt.util.Tracked provides a facility for partial caching that can be mixed and
matched with other trackers.

338

Similar to the previous value associated with task keys, sbt.util.Tracked.lastOutput
creates a tracker for the last calculated value. Tracked.lastOutput offers
more flexibility in terms of where to store the value. (This allows the value to
be shared across multiple tasks).

Suppose we would initially take an Int as the input, and turn it into a String,
but for subsequent invocation we’d append "!":

scala> import sbt._, sbt.util.CacheImplicits._
import sbt._
import sbt.util.CacheImplicits._

// use streams.value.cacheStoreFactory.make("last") for real tasks
scala> val store = sbt.util.CacheStore(file("/tmp/last"))
store: sbt.util.CacheStore = sbt.util.FileBasedStore@5a4a6716

scala> val badCachedWork = Tracked.lastOutput[Int, String](store) {
case (in, None) => in.toString
case (in, Some(read)) => read + "!"

}
badCachedWork: Int => String = sbt.util.Tracked$$$Lambda$6326/638923124@68c6ff60

scala> badCachedWork(1)
res1: String = 1

scala> badCachedWork(1)
res2: String = 1!

scala> badCachedWork(2)
res3: String = 1!!

scala> badCachedWork(2)
res4: String = 1!!!

Note: Tracked.lastOutput does not invalidate the cache when the input
changes.

See the Tracked.inputChanged section below to make this work.

Tracked.inputChanged

To track the changes of input parameters, use Tracked.inputChanged.

scala> import sbt._, sbt.util.CacheImplicits._
import sbt._
import sbt.util.CacheImplicits._

339

// use streams.value.cacheStoreFactory.make("input") for real tasks
scala> val store = sbt.util.CacheStore(file("/tmp/input"))
store: sbt.util.CacheStore = sbt.util.FileBasedStore@5a4a6716

scala> val tracker = Tracked.inputChanged[Int, String](store) { case (changed, in) =>
if (changed) {
println("input changed")

}
in.toString

}
tracker: Int => String = sbt.util.Tracked$$$Lambda$6357/1296627950@6e6837e4

scala> tracker(1)
input changed
res6: String = 1

scala> tracker(1)
res7: String = 1

scala> tracker(2)
input changed
res8: String = 2

scala> tracker(2)
res9: String = 2

scala> tracker(1)
input changed
res10: String = 1

Now, we can nest Tracked.inputChanged and Tracked.lastOutput to regain
the cache invalidation.

// use streams.value.cacheStoreFactory
scala> val cacheFactory = sbt.util.CacheStoreFactory(file("/tmp/cache"))
cacheFactory: sbt.util.CacheStoreFactory = sbt.util.DirectoryStoreFactory@3a3d3778

scala> def doWork(i: Int): String = {
println("working...")
Thread.sleep(1000)
i.toString

}
doWork: (i: Int)String

scala> val cachedWork2 = Tracked.inputChanged[Int, String](cacheFactory.make("input")) { case (changed: Boolean, in: Int) =>
val tracker = Tracked.lastOutput[Int, String](cacheFactory.make("last")) {

case (in, None) => doWork(in)

340

case (in, Some(read)) =>
if (changed) doWork(in)
else read

}
tracker(in)

}
cachedWork2: Int => String = sbt.util.Tracked$$$Lambda$6548/972308467@1c9788cc

scala> cachedWork2(1)
working...
res0: String = 1

scala> cachedWork2(1)
res1: String = 1

One benefit of combining trackers and/or previous value is that we can control
the invalidation timing. For example, we can create a cache that works only
twice.

lazy val hi = taskKey[String]("say hi")
lazy val hiCount = taskKey[(String, Int)]("track number of the times hi was called")

hi := hiCount.value._1
hiCount := {

import sbt.util.CacheImplicits._
val prev = hiCount.previous
val s = streams.value
def doWork(x: String): String = {
s.log.info("working...")
Thread.sleep(1000)
x + "!"

}
val cachedWork = Tracked.inputChanged[String, (String, Int)](s.cacheStoreFactory.make("input")) { case (changed: Boolean, in: String) =>
prev match {

case None => (doWork(in), 0)
case Some((last, n)) =>

if (changed || n > 1) (doWork(in), 0)
else (last, n + 1)

}
}
cachedWork("hi")

}

This uses hiCount task’s previous value to track the number of times it got
called, and invalidates the cache when n > 1.

sbt:hello> hi
[info] working...

341

[success] Total time: 1 s, completed Aug 17, 2019 10:36:34 AM
sbt:hello> hi
[success] Total time: 0 s, completed Aug 17, 2019 10:36:35 AM
sbt:hello> hi
[success] Total time: 0 s, completed Aug 17, 2019 10:36:38 AM
sbt:hello> hi
[info] working...
[success] Total time: 1 s, completed Aug 17, 2019 10:36:40 AM

Tracking file attributes

Files often come up as caching targets, but java.io.File just carries the file
name, so it’s not very useful on its own for the purpose of caching.

For file caching, sbt provides a facility called sbt.util.FileFunction.cached(…) to
cache file inputs and outputs. The following example implements a cached task
that counts the number of lines in *.md and outputs *.md under cross target
directory with the number of lines as their contents.

lazy val countInput = taskKey[Seq[File]]("")
lazy val countFiles = taskKey[Seq[File]]("")

def doCount(in: Set[File], outDir: File): Set[File] =
in map { source =>

val out = outDir / source.getName
val c = IO.readLines(source).size
IO.write(out, c + "\n")
out

}

lazy val root = (project in file("."))
.settings(
countInput :=
sbt.nio.file.FileTreeView.default
.list(Glob(baseDirectory.value + "/*.md"))
.map(_._1.toFile),

countFiles := {
val s = streams.value
val in = countInput.value
val t = crossTarget.value

// wraps a function doCount in an up-to-date check
val cachedFun = FileFunction.cached(s.cacheDirectory / "count") { (in: Set[File]) =>
doCount(in, t): Set[File]

}
// Applies the cached function to the inputs files
cachedFun(in.toSet).toSeq.sorted

},

342

https://www.scala-sbt.org/1.x/api/sbt/util/FileFunction$.html#cached(cacheBaseDirectory:java.io.File)(action:Set%5Bjava.io.File%5D=%3ESet%5Bjava.io.File%5D):Set%5Bjava.io.File%5D=%3ESet%5Bjava.io.File%5D

)

There are two additional arguments for the first parameter list that allow the file
tracking style to be explicitly specified. By default, the input tracking style is
FilesInfo.lastModified, based on a file’s last modified time, and the output
tracking style is FilesInfo.exists, based only on whether the file exists.

FileInfo

• FileInfo.exists tracks if the file exists
• FileInfo.lastModified track the last modified timestamp
• FileInfo.hash tracks the SHA-1 content hash
• FileInfo.full tracks both the last modified and the content hash

scala> FileInfo.exists(file("/tmp/cache/last"))
res23: sbt.util.PlainFileInfo = PlainFile(/tmp/cache/last,true)

scala> FileInfo.lastModified(file("/tmp/cache/last"))
res24: sbt.util.ModifiedFileInfo = FileModified(/tmp/cache/last,1565855326328)

scala> FileInfo.hash(file("/tmp/cache/last"))
res25: sbt.util.HashFileInfo = FileHash(/tmp/cache/last,List(-89, -11, 75, 97, 65, -109, -74, -126, -124, 43, 37, -16, 9, -92, -70, -100, -82, 95, 93, -112))

scala> FileInfo.full(file("/tmp/cache/last"))
res26: sbt.util.HashModifiedFileInfo = FileHashModified(/tmp/cache/last,List(-89, -11, 75, 97, 65, -109, -74, -126, -124, 43, 37, -16, 9, -92, -70, -100, -82, 95, 93, -112),1565855326328)

There is also sbt.util.FilesInfo that accepts a Set of Files (though this
doesn’t always work due to complicated abstract type that it uses).

scala> FilesInfo.exists(Set(file("/tmp/cache/last"), file("/tmp/cache/nonexistent")))
res31: sbt.util.FilesInfo[_1.F] forSome { val _1: sbt.util.FileInfo.Style } = FilesInfo(Set(PlainFile(/tmp/cache/last,true), PlainFile(/tmp/cache/nonexistent,false)))

Tracked.inputChanged

The following example implements a cached task that counts the number of lines
in README.md.

lazy val count = taskKey[Int]("")

count := {
import sbt.util.CacheImplicits._
val prev = count.previous
val s = streams.value
val toCount = baseDirectory.value / "README.md"
def doCount(source: File): Int = {
s.log.info("working...")
IO.readLines(source).size

343

}
val cachedCount = Tracked.inputChanged[ModifiedFileInfo, Int](s.cacheStoreFactory.make("input")) {
(changed: Boolean, in: ModifiedFileInfo) =>
prev match {

case None => doCount(in.file)
case Some(last) =>

if (changed) doCount(in.file)
else last

}
}
cachedCount(FileInfo.lastModified(toCount))

}

We can try this by running show count from the sbt shell:

sbt:hello> show count
[info] working...
[info] 2
[success] Total time: 0 s, completed Aug 16, 2019 9:58:38 PM
sbt:hello> show count
[info] 2
[success] Total time: 0 s, completed Aug 16, 2019 9:58:39 PM

// change something in README.md
sbt:hello> show count
[info] working...
[info] 3
[success] Total time: 0 s, completed Aug 16, 2019 9:58:44 PM

This works out-of-box thanks to sbt.util.FileInfo implementing JsonFormat
to persist itself.

Tracked.outputChanged

The tracking works by stamping the files (collecting file attributes), storing the
stamps in a cache, and comparing them later. Sometimes, it’s important to pay
attention to the timing of when stamping happens. Suppose that we want to
format TypeScript files, and use SHA-1 hash to detect changes. Stamping the
files before running the formatter would cause the cache to be invalidated in
subsequent calls to the task. This is because the formatter itself may modify
the TypeScript files.

Use Tracked.outputChanged stamps after your work is done to prevent this.

lazy val compileTypeScript = taskKey[Unit]("compiles *.ts files")
lazy val formatTypeScript = taskKey[Seq[File]]("format *.ts files")

344

compileTypeScript / sources := (baseDirectory.value / "src").globRecursive("*.ts").get
formatTypeScript := {

import sbt.util.CacheImplicits._
val s = streams.value
val files = (compileTypeScript / sources).value

def doFormat(source: File): File = {
s.log.info(s"formatting $source")
val lines = IO.readLines(source)
IO.writeLines(source, lines ++ List("// something"))
source

}
val tracker = Tracked.outputChanged(s.cacheStoreFactory.make("output")) {

(outChanged: Boolean, outputs: Seq[HashFileInfo]) =>
if (outChanged) outputs map { info => doFormat(info.file) }
else outputs map { _.file }

}
tracker(() => files.map(FileInfo.hash(_)))

}

Type formatTypeScript from the sbt shell to see how it works:

sbt:hello> formatTypeScript
[info] formatting /Users/eed3si9n/work/hellotest/src/util.ts
[info] formatting /Users/eed3si9n/work/hellotest/src/hello.ts
[success] Total time: 0 s, completed Aug 17, 2019 10:07:30 AM
sbt:hello> formatTypeScript
[success] Total time: 0 s, completed Aug 17, 2019 10:07:32 AM

One potential drawback of this implementation is that we only have true/false
information about the fact that any of the files have changed. This could result
in a reformatting of all of the files anytime one file gets changed.

// make change to one file
sbt:hello> formatTypeScript
[info] formatting /Users/eed3si9n/work/hellotest/src/util.ts
[info] formatting /Users/eed3si9n/work/hellotest/src/hello.ts
[success] Total time: 0 s, completed Aug 17, 2019 10:13:47 AM

See the Tracked.diffOuputs in the below to prevent this all-or-nothing behav-
ior.

Another potential use for Tracked.outputChanged is using it with
FileInfo.exists(_) to track if the output file still exists. This is usu-
ally not necessary if you output something under target directory where
caches are also stored.

345

Tracked.diffInputs

The Tracked.inputChanged tracker only gives Boolean value, so when the
cache is invalidated we need to redo all the work. Use Tracked.diffInputs
to track the differences.

Tracked.diffInputs reports a datatype called sbt.util.ChangeReport:

/** The result of comparing some current set of objects against a previous set of objects.*/
trait ChangeReport[T] {

/** The set of all of the objects in the current set.*/
def checked: Set[T]

/** All of the objects that are in the same state in the current and reference sets.*/
def unmodified: Set[T]

/**
* All checked objects that are not in the same state as the reference. This includes objects that are in both
* sets but have changed and files that are only in one set.
*/

def modified: Set[T] // all changes, including added

/** All objects that are only in the current set.*/
def added: Set[T]

/** All objects only in the previous set*/
def removed: Set[T]
def +++(other: ChangeReport[T]): ChangeReport[T] = new CompoundChangeReport(this, other)

....
}

Let’s see how the report works by printing it out.

lazy val compileTypeScript = taskKey[Unit]("compiles *.ts files")

compileTypeScript / sources := (baseDirectory.value / "src").globRecursive("*.ts").get
compileTypeScript := {

val s = streams.value
val files = (compileTypeScript / sources).value
Tracked.diffInputs(s.cacheStoreFactory.make("input_diff"), FileInfo.lastModified)(files.toSet) {

(inDiff: ChangeReport[File]) =>
s.log.info(inDiff.toString)

}
}

Here’s how it looks when you rename a file for example:

346

sbt:hello> compileTypeScript
[info] Change report:
[info] Checked: /Users/eed3si9n/work/hellotest/src/util.ts, /Users/eed3si9n/work/hellotest/src/hello.ts
[info] Modified: /Users/eed3si9n/work/hellotest/src/util.ts, /Users/eed3si9n/work/hellotest/src/hello.ts
[info] Unmodified:
[info] Added: /Users/eed3si9n/work/hellotest/src/util.ts, /Users/eed3si9n/work/hellotest/src/hello.ts
[info] Removed:
[success] Total time: 0 s, completed Aug 17, 2019 10:42:50 AM
sbt:hello> compileTypeScript
[info] Change report:
[info] Checked: /Users/eed3si9n/work/hellotest/src/util.ts, /Users/eed3si9n/work/hellotest/src/bye.ts
[info] Modified: /Users/eed3si9n/work/hellotest/src/hello.ts, /Users/eed3si9n/work/hellotest/src/bye.ts
[info] Unmodified: /Users/eed3si9n/work/hellotest/src/util.ts
[info] Added: /Users/eed3si9n/work/hellotest/src/bye.ts
[info] Removed: /Users/eed3si9n/work/hellotest/src/hello.ts
[success] Total time: 0 s, completed Aug 17, 2019 10:43:37 AM

If we had a mapping between *.ts files and *.js files, then we should be able to
make the compilation more incremental. For incremental compilation of Scala,
Zinc tracks both the relationship between the *.scala and *.class files as
well as the relationship among *.scala. We could make something like that for
TypeScript. Save the following as project/TypeScript.scala:

import sbt._
import sjsonnew.{ :*:, LList, LNil}
import sbt.util.CacheImplicits._

/**
* products - products keep the mapping between source *.ts files and *.js files that are generated.
* references - references keep the mapping between *.ts files referencing other *.ts files.
*/

case class TypeScriptAnalysis(products: List[(File, File)], references: List[(File, File)]) {
def ++(that: TypeScriptAnalysis): TypeScriptAnalysis =
TypeScriptAnalysis(products ++ that.products, references ++ that.references)

}
object TypeScriptAnalysis {

implicit val analysisIso = LList.iso(
{ a: TypeScriptAnalysis => ("products", a.products) :*: ("references", a.references) :*: LNil },
{ in: List[(File, File)] :*: List[(File, File)] :*: LNil => TypeScriptAnalysis(in._1, in._2) })

}

In the build.sbt:

lazy val compileTypeScript = taskKey[TypeScriptAnalysis]("compiles *.ts files")

compileTypeScript / sources := (baseDirectory.value / "src").globRecursive("*.ts").get
compileTypeScript / target := target.value / "js"
compileTypeScript := {

347

import sbt.util.CacheImplicits._
val prev0 = compileTypeScript.previous
val prev = prev0.getOrElse(TypeScriptAnalysis(Nil, Nil))
val s = streams.value
val files = (compileTypeScript / sources).value

def doCompile(source: File): TypeScriptAnalysis = {
println("working...")
val out = (compileTypeScript / target).value / source.getName.replaceAll("""\.ts$""", ".js")
IO.touch(out)
// add a fake reference from any file to util.ts
val references: List[(File, File)] =

if (source.getName != "util.ts") List(source -> (baseDirectory.value / "src" / "util.ts"))
else Nil

TypeScriptAnalysis(List(source -> out), references)
}
Tracked.diffInputs(s.cacheStoreFactory.make("input_diff"), FileInfo.lastModified)(files.toSet) {

(inDiff: ChangeReport[File]) =>
val products = scala.collection.mutable.ListBuffer(prev.products: _*)
val references = scala.collection.mutable.ListBuffer(prev.references: _*)
val initial = inDiff.modified & inDiff.checked
val reverseRefs = initial.flatMap(x => Set(x) ++ references.collect({ case (k, `x`) => k }).toSet)
products --= products.filter({ case (k, v) => reverseRefs(k) || inDiff.removed(k) })
references --= references.filter({ case (k, v) => reverseRefs(k) || inDiff.removed(k) })
reverseRefs foreach { x =>

val temp = doCompile(x)
products ++= temp.products
references ++= temp.references

}
TypeScriptAnalysis(products.toList, references.toList)

}
}

The above is a fake compilation that just creates .js files under target/js.

sbt:hello> compileTypeScript
working...
working...
[success] Total time: 0 s, completed Aug 16, 2019 10:22:58 PM
sbt:hello> compileTypeScript
[success] Total time: 0 s, completed Aug 16, 2019 10:23:03 PM

Since we added a reference from hello.ts to util.ts, if we modified
src/util.ts, it should trigger the compilation of src/util.ts as well as
src/hello.ts.

sbt:hello> show compileTypeScript
working...

348

working...
[info] TypeScriptAnalysis(List((/Users/eed3si9n/work/hellotest/src/util.ts,/Users/eed3si9n/work/hellotest/target/js/util.ts), (/Users/eed3si9n/work/hellotest/src/hello.ts,/Users/eed3si9n/work/hellotest/target/js/hello.ts)),List((/Users/eed3si9n/work/hellotest/src/hello.ts,/Users/eed3si9n/work/hellotest/src/util.ts)))

It works.

Tracked.diffOutputs

Tracked.diffOutputs is a finer version of Tracked.outputChanged that
stamps after the work is done, and also able to report the set of modified files.

This can be used to format only the changed TypeScript files.

lazy val formatTypeScript = taskKey[Seq[File]]("format *.ts files")

compileTypeScript / sources := (baseDirectory.value / "src").globRecursive("*.ts").get
formatTypeScript := {

val s = streams.value
val files = (compileTypeScript / sources).value
def doFormat(source: File): File = {
s.log.info(s"formatting $source")
val lines = IO.readLines(source)
IO.writeLines(source, lines ++ List("// something"))
source

}
Tracked.diffOutputs(s.cacheStoreFactory.make("output_diff"), FileInfo.hash)(files.toSet) {
(outDiff: ChangeReport[File]) =>
val initial = outDiff.modified & outDiff.checked
initial.toList map doFormat

}
}

Here’s how formatTypeScript looks like in the shell:

sbt:hello> formatTypeScript
[info] formatting /Users/eed3si9n/work/hellotest/src/util.ts
[info] formatting /Users/eed3si9n/work/hellotest/src/hello.ts
[success] Total time: 0 s, completed Aug 17, 2019 9:28:56 AM
sbt:hello> formatTypeScript
[success] Total time: 0 s, completed Aug 17, 2019 9:28:58 AM

Case study: sbt-scalafmt

sbt-scalafmt implements scalafmt and scalafmtCheck tasks that cooperate
with each other. For example, if scalafmt ran successfully, and no changes
have been made to the sources, it will skip scalafmtCheck’s checking.

Here’s a snippet of how that may be implemented:

349

private def cachedCheckSources(
cacheStoreFactory: CacheStoreFactory,
sources: Seq[File],
config: Path,
log: Logger,
writer: PrintWriter

): ScalafmtAnalysis = {
trackSourcesAndConfig(cacheStoreFactory, sources, config) {
(outDiff, configChanged, prev) =>
log.debug(outDiff.toString)
val updatedOrAdded = outDiff.modified & outDiff.checked
val filesToCheck =

if (configChanged) sources
else updatedOrAdded.toList

val failed = prev.failed filter { _.exists }
val files = (filesToCheck ++ failed.toSet).toSeq
val result = checkSources(files, config, log, writer)
// cachedCheckSources moved the outDiff cursor forward,
// save filesToCheck so scalafmt can later run formatting
prev.copy(
failed = result.failed,
pending = (prev.pending ++ filesToCheck).distinct

)
}

}

private def trackSourcesAndConfig(
cacheStoreFactory: CacheStoreFactory,
sources: Seq[File],
config: Path

)(
f: (ChangeReport[File], Boolean, ScalafmtAnalysis) => ScalafmtAnalysis

): ScalafmtAnalysis = {
val prevTracker = Tracked.lastOutput[Unit, ScalafmtAnalysis](cacheStoreFactory.make("last")) {
(_, prev0) =>
val prev = prev0.getOrElse(ScalafmtAnalysis(Nil, Nil))
val tracker = Tracked.inputChanged[HashFileInfo, ScalafmtAnalysis](cacheStoreFactory.make("config")) {

case (configChanged, configHash) =>
Tracked.diffOutputs(cacheStoreFactory.make("output-diff"), FileInfo.lastModified)(sources.toSet) {
(outDiff: ChangeReport[File]) =>
f(outDiff, configChanged, prev)

}
}
tracker(FileInfo.hash(config.toFile))

}
prevTracker(())

350

}

In the above, trackSourcesAndConfig is a triple-nested tracker that tracks
configuration file, source last modified stamps, and the previous value shared
between two tasks. To share the previous value across two different tasks, we are
using Tracked.lastOutput instead of the .previous method associated with
the keys.

Summary

Depending on the level of control you need, sbt offers a flexible set of utilities
to cache and track values and files.

• .previous, FileFunction.cached, and Cache.cached are the basic
cache to get started.

• To invalidate some result based on a change to its input parameters, use
Tracked.inputChanged.

• File attributes can be tracked as values by using FileInfo.exists,
FileInfo.lastModified, and FileInfo.hash.

• Tracked offers trackers that are often nested to track input invalidation,
output invalidation, and diffing.

Input Tasks

Input Tasks parse user input and produce a task to run. Parsing Input describes
how to use the parser combinators that define the input syntax and tab comple-
tion. This page describes how to hook those parser combinators into the input
task system.

Input Keys

A key for an input task is of type InputKey and represents the input task like a
SettingKey represents a setting or a TaskKey represents a task. Define a new
input task key using the inputKey.apply factory method:

// goes in project/Build.scala or in build.sbt
val demo = inputKey[Unit]("A demo input task.")

The definition of an input task is similar to that of a normal task, but it can
also use the result of a

Parser applied to user input. Just as the special value method gets the value
of a setting or task, the special parsed method gets the result of a Parser.

351

Parsing-Input.html
Parsing-Input.html

Basic Input Task Definition

The simplest input task accepts a space-delimited sequence of arguments. It
does not provide useful tab completion and parsing is basic. The built-in parser
for space-delimited arguments is constructed via the spaceDelimited method,
which accepts as its only argument the label to present to the user during tab
completion.

For example, the following task prints the current Scala version and then echoes
the arguments passed to it on their own line.

import complete.DefaultParsers._

demo := {
// get the result of parsing
val args: Seq[String] = spaceDelimited("<arg>").parsed
// Here, we also use the value of the `scalaVersion` setting
println("The current Scala version is " + scalaVersion.value)
println("The arguments to demo were:")
args foreach println

}

Input Task using Parsers

The Parser provided by the spaceDelimited method does not provide any flex-
ibility in defining the input syntax. Using a custom parser is just a matter of
defining your own Parser as described on the Parsing Input page.

Constructing the Parser

The first step is to construct the actual Parser by defining a value of one of the
following types:

• Parser[I]: a basic parser that does not use any settings
• Initialize[Parser[I]]: a parser whose definition depends on one or

more settings
• Initialize[State => Parser[I]]: a parser that is defined using both

settings and the current state

We already saw an example of the first case with spaceDelimited, which doesn’t
use any settings in its definition. As an example of the third case, the following
defines a contrived Parser that uses the project’s Scala and sbt version set-
tings as well as the state. To use these settings, we need to wrap the Parser
construction in Def.setting and get the setting values with the special value
method:

352

Parsing-Input.html
Build-State.html

import complete.DefaultParsers._
import complete.Parser

val parser: Def.Initialize[State => Parser[(String,String)]] =
Def.setting {

(state: State) =>
(token("scala" <~ Space) ~ token(scalaVersion.value)) |
(token("sbt" <~ Space) ~ token(sbtVersion.value)) |
(token("commands" <~ Space) ~

token(state.remainingCommands.size.toString))
}

This Parser definition will produce a value of type (String,String). The input
syntax defined isn’t very flexible; it is just a demonstration. It will produce one
of the following values for a successful parse (assuming the current Scala version
is 2.12.18, the current sbt version is 1.9.8, and there are 3 commands left to run):

• (scala,2.12.18)
• (sbt,1.9.8)
• (commands,3)

Again, we were able to access the current Scala and sbt version for the project
because they are settings. Tasks cannot be used to define the parser.

Constructing the Task

Next, we construct the actual task to execute from the result of the Parser. For
this, we define a task as usual, but we can access the result of parsing via the
special parsed method on Parser.

The following contrived example uses the previous example’s output (of type
(String,String)) and the result of the package task to print some information
to the screen.

demo := {
val (tpe, value) = parser.parsed
println("Type: " + tpe)
println("Value: " + value)
println("Packaged: " + packageBin.value.getAbsolutePath)

}

The InputTask type

It helps to look at the InputTask type to understand more advanced usage of
input tasks. The core input task type is:

class InputTask[T](val parser: State => Parser[Task[T]])

353

Normally, an input task is assigned to a setting and you work with
Initialize[InputTask[T]].

Breaking this down,

1. You can use other settings (via Initialize) to construct an input task.
2. You can use the current State to construct the parser.
3. The parser accepts user input and provides tab completion.
4. The parser produces the task to run.

So, you can use settings or State to construct the parser that defines an input
task’s command line syntax. This was described in the previous section. You
can then use settings, State, or user input to construct the task to run. This
is implicit in the input task syntax.

Using other input tasks

The types involved in an input task are composable, so it is possible to reuse
input tasks. The .parsed and .evaluated methods are defined on InputTasks
to make this more convenient in common situations:

• Call .parsed on an InputTask[T] or Initialize[InputTask[T]] to get
the Task[T] created after parsing the command line

• Call .evaluated on an InputTask[T] or Initialize[InputTask[T]] to
get the value of type T from evaluating that task

In both situations, the underlying Parser is sequenced with other parsers in
the input task definition. In the case of .evaluated, the generated task is
evaluated.

The following example applies the run input task, a literal separator parser --,
and run again. The parsers are sequenced in order of syntactic appearance, so
that the arguments before -- are passed to the first run and the ones after are
passed to the second.

val run2 = inputKey[Unit](
"Runs the main class twice with different argument lists separated by --")

val separator: Parser[String] = "--"

run2 := {
val one = (Compile / run).evaluated
val sep = separator.parsed
val two = (Compile / run).evaluated

}

For a main class Demo that echoes its arguments, this looks like:

$ sbt

354

> run2 a b -- c d
[info] Running Demo c d
[info] Running Demo a b
c
d
a
b

Preapplying input

Because InputTasks are built from Parsers, it is possible to generate a new
InputTask by applying some input programmatically. (It is also possible to
generate a Task, which is covered in the next section.) Two convenience methods
are provided on InputTask[T] and Initialize[InputTask[T]] that accept the
String to apply.

• partialInput applies the input and allows further input, such as from
the command line

• fullInput applies the input and terminates parsing, so that further input
is not accepted

In each case, the input is applied to the input task’s parser. Because input tasks
handle all input after the task name, they usually require initial whitespace to
be provided in the input.

Consider the example in the previous section. We can modify it so that we:

• Explicitly specify all of the arguments to the first run. We use name and
version to show that settings can be used to define and modify parsers.

• Define the initial arguments passed to the second run, but allow further
input on the command line.

Note: if the input derives from settings you need to use, for example,
Def.taskDyn { ... }.value

lazy val run2 = inputKey[Unit]("Runs the main class twice: " +
"once with the project name and version as arguments"
"and once with command line arguments preceded by hard coded values.")

// The argument string for the first run task is ' <name> <version>'
lazy val firstInput: Initialize[String] =

Def.setting(s" ${name.value} ${version.value}")

// Make the first arguments to the second run task ' red blue'
lazy val secondInput: String = " red blue"

run2 := {
val one = (Compile / run).fullInput(firstInput.value).evaluated

355

val two = (Compile / run).partialInput(secondInput).evaluated
}

For a main class Demo that echoes its arguments, this looks like:

$ sbt
> run2 green
[info] Running Demo demo 1.0
[info] Running Demo red blue green
demo
1.0
red
blue
green

Get a Task from an InputTask

The previous section showed how to derive a new InputTask by applying in-
put. In this section, applying input produces a Task. The toTask method on
Initialize[InputTask[T]] accepts the String input to apply and produces a
task that can be used normally. For example, the following defines a plain task
runFixed that can be used by other tasks or run directly without providing any
input:

lazy val runFixed = taskKey[Unit]("A task that hard codes the values to `run`")

runFixed := {
val _ = (Compile / run).toTask(" blue green").value
println("Done!")

}

For a main class Demo that echoes its arguments, running runFixed looks like:

$ sbt
> runFixed
[info] Running Demo blue green
blue
green
Done!

Each call to toTask generates a new task, but each task is configured the same
as the original InputTask (in this case, run) but with different input applied.
For example:

lazy val runFixed2 = taskKey[Unit]("A task that hard codes the values to `run`")

run / fork := true

356

runFixed2 := {
val x = (Compile / run).toTask(" blue green").value
val y = (Compile / run).toTask(" red orange").value
println("Done!")

}

The different toTask calls define different tasks that each run the project’s main
class in a new jvm. That is, the fork setting configures both, each has the same
classpath, and each run the same main class. However, each task passes different
arguments to the main class. For a main class Demo that echoes its arguments,
the output of running runFixed2 might look like:

$ sbt
> runFixed2
[info] Running Demo blue green
[info] Running Demo red orange
blue
green
red
orange
Done!

Commands

What is a “command”?

A “command” looks similar to a task: it’s a named operation that can be
executed from the sbt console.

However, a command’s implementation takes as its parameter the entire state of
the build (represented by State) and computes a new State. This means that a
command can look at or modify other sbt settings, for example. Typically, you
would resort to a command when you need to do something that’s impossible
in a regular task.

Introduction

There are three main aspects to commands:

1. The syntax used by the user to invoke the command, including:
• Tab completion for the syntax
• The parser to turn input into an appropriate data structure

2. The action to perform using the parsed data structure. This action trans-
forms the build State.

3. Help provided to the user

357

Build-State.html
Build-State.html
../api/sbt/State.html

In sbt, the syntax part, including tab completion, is specified with parser com-
binators. If you are familiar with the parser combinators in Scala’s standard
library, these are very similar. The action part is a function (State, T) =>
State, where T is the data structure produced by the parser. See the Parsing
Input page for how to use the parser combinators.

State provides access to the build state, such as all registered Commands, the
remaining commands to execute, and all project-related information. See States
and Actions for details on State.

Finally, basic help information may be provided that is used by the help com-
mand to display command help.

Defining a Command

A command combines a function State => Parser[T] with an action (State,
T) => State. The reason for State => Parser[T] and not simply Parser[T]
is that often the current State is used to build the parser. For example, the
currently loaded projects (provided by State) determine valid completions for
the project command. Examples for the general and specific cases are shown
in the following sections.

See Command.scala for the source API details for constructing commands.

General commands

General command construction looks like:

val action: (State, T) => State = ...
val parser: State => Parser[T] = ...
val command: Command = Command("name")(parser)(action)

No-argument commands

There is a convenience method for constructing commands that do not accept
any arguments.

val action: State => State = ...
val command: Command = Command.command("name")(action)

Single-argument command

There is a convenience method for constructing commands that accept a single
argument with arbitrary content.

// accepts the state and the single argument
val action: (State, String) => State = ...
val command: Command = Command.single("name")(action)

358

Parsing-Input.html
Parsing-Input.html
../api/sbt/State.html
Build-State.html
Build-State.html
https://github.com/sbt/sbt/blob/develop/main-command/src/main/scala/sbt/Command.scala

Multi-argument command

There is a convenience method for constructing commands that accept multiple
arguments separated by spaces.

val action: (State, Seq[String]) => State = ...

// <arg> is the suggestion printed for tab completion on an argument
val command: Command = Command.args("name", "<arg>")(action)

Full Example

The following example is a sample build that adds commands to a project. To
try it out:

1. Create build.sbt and project/CommandExample.scala.
2. Run sbt on the project.
3. Try out the hello, helloAll, failIfTrue, color, and printState com-

mands.
4. Use tab-completion and the code below as guidance.

Here’s build.sbt:

import CommandExample._

ThisBuild / organization := "com.example"
ThisBuild / scalaVersion := "2.12.18"
ThisBuild / version := "0.1.0-SNAPSHOT"

lazy val root = (project in file("."))
.settings(
commands ++= Seq(hello, helloAll, failIfTrue, changeColor, printState)

)

Here’s project/CommandExample.scala:

import sbt._
import Keys._

// imports standard command parsing functionality
import complete.DefaultParsers._

object CommandExample {
// A simple, no-argument command that prints "Hi",
// leaving the current state unchanged.
def hello = Command.command("hello") { state =>
println("Hi!")
state

359

}

// A simple, multiple-argument command that prints "Hi" followed by the arguments.
// Again, it leaves the current state unchanged.
def helloAll = Command.args("helloAll", "<name>") { (state, args) =>
println("Hi " + args.mkString(" "))
state

}

// A command that demonstrates failing or succeeding based on the input
def failIfTrue = Command.single("failIfTrue") {

case (state, "true") => state.fail
case (state, _) => state

}

// Demonstration of a custom parser.
// The command changes the foreground or background terminal color
// according to the input.
lazy val change = Space ~> (reset | setColor)
lazy val reset = token("reset" ^^^ "\033[0m")
lazy val color = token(Space ~> ("blue" ^^^ "4" | "green" ^^^ "2"))
lazy val select = token("fg" ^^^ "3" | "bg" ^^^ "4")
lazy val setColor = (select ~ color) map { case (g, c) => "\033[" + g + c + "m" }

def changeColor = Command("color")(_ => change) { (state, ansicode) =>
print(ansicode)
state

}

// A command that demonstrates getting information out of State.
def printState = Command.command("printState") { state =>

import state._
println(definedCommands.size + " registered commands")
println("commands to run: " + show(remainingCommands))
println()

println("original arguments: " + show(configuration.arguments))
println("base directory: " + configuration.baseDirectory)
println()

println("sbt version: " + configuration.provider.id.version)
println("Scala version (for sbt): " + configuration.provider.scalaProvider.version)
println()

val extracted = Project.extract(state)
import extracted._

360

println("Current build: " + currentRef.build)
println("Current project: " + currentRef.project)
println("Original setting count: " + session.original.size)
println("Session setting count: " + session.append.size)

state
}

def show[T](s: Seq[T]) =
s.map("'" + _ + "'").mkString("[", ", ", "]")

}

Parsing and tab completion

This page describes the parser combinators in sbt. These parser combinators are
typically used to parse user input and provide tab completion for Input Tasks
and Commands. If you are already familiar with Scala’s parser combinators,
the methods are mostly the same except that their arguments are strict. There
are two additional methods for controlling tab completion that are discussed at
the end of the section.

Parser combinators build up a parser from smaller parsers. A Parser[T] in its
most basic usage is a function String => Option[T]. It accepts a String to
parse and produces a value wrapped in Some if parsing succeeds or None if it
fails. Error handling and tab completion make this picture more complicated,
but we’ll stick with Option for this discussion.

The following examples assume the imports: :

import sbt._
import complete.DefaultParsers._

Basic parsers

The simplest parser combinators match exact inputs:

// A parser that succeeds if the input is 'x', returning the Char 'x'
// and failing otherwise
val singleChar: Parser[Char] = 'x'

// A parser that succeeds if the input is "blue", returning the String "blue"
// and failing otherwise
val litString: Parser[String] = "blue"

In these examples, implicit conversions produce a literal Parser from a Char
or String. Other basic parser constructors are the charClass, success and
failure methods:

361

Input-Tasks.html
Commands.html

// A parser that succeeds if the character is a digit, returning the matched Char
// The second argument, "digit", describes the parser and is used in error messages
val digit: Parser[Char] = charClass((c: Char) => c.isDigit, "digit")

// A parser that produces the value 3 for an empty input string, fails otherwise
val alwaysSucceed: Parser[Int] = success(3)

// Represents failure (always returns None for an input String).
// The argument is the error message.
val alwaysFail: Parser[Nothing] = failure("Invalid input.")

Built-in parsers

sbt comes with several built-in parsers defined in sbt.complete.DefaultParsers.
Some commonly used built-in parsers are:

• Space, NotSpace, OptSpace, and OptNotSpace for parsing
spaces or non-spaces, required or not.

• StringBasic for parsing text that may be quoted.
• IntBasic for parsing a signed Int value.
• Digit and HexDigit for parsing a single decimal or hexadeci-

mal digit.
• Bool for parsing a Boolean value

See the DefaultParsers API for details.

Combining parsers

We build on these basic parsers to construct more interesting parsers. We can
combine parsers in a sequence, choose between parsers, or repeat a parser.

// A parser that succeeds if the input is "blue" or "green",
// returning the matched input
val color: Parser[String] = "blue" | "green"

// A parser that matches either "fg" or "bg"
val select: Parser[String] = "fg" | "bg"

// A parser that matches "fg" or "bg", a space, and then the color, returning the matched values.
val setColor: Parser[(String, Char, String)] =
select ~ ' ' ~ color

// Often, we don't care about the value matched by a parser, such as the space above
// For this, we can use ~> or <~, which keep the result of
// the parser on the right or left, respectively
val setColor2: Parser[(String, String)] = select ~ (' ' ~> color)

362

../api/sbt/internal/util/complete/DefaultParsers$.html
../api/sbt/internal/util/complete/DefaultParsers$.html

// Match one or more digits, returning a list of the matched characters
val digits: Parser[Seq[Char]] = charClass(_.isDigit, "digit").+

// Match zero or more digits, returning a list of the matched characters
val digits0: Parser[Seq[Char]] = charClass(_.isDigit, "digit").*

// Optionally match a digit
val optDigit: Parser[Option[Char]] = charClass(_.isDigit, "digit").?

Transforming results

A key aspect of parser combinators is transforming results along the way into
more useful data structures. The fundamental methods for this are map and
flatMap. Here are examples of map and some convenience methods implemented
on top of map.

// Apply the `digits` parser and apply the provided function to the matched
// character sequence
val num: Parser[Int] = digits map { (chars: Seq[Char]) => chars.mkString.toInt }

// Match a digit character, returning the matched character or return '0' if the input is not a digit
val digitWithDefault: Parser[Char] = charClass(_.isDigit, "digit") ?? '0'

// The previous example is equivalent to:
val digitDefault: Parser[Char] =
charClass(_.isDigit, "digit").? map { (d: Option[Char]) => d getOrElse '0' }

// Succeed if the input is "blue" and return the value 4
val blue = "blue" ^^^ 4

// The above is equivalent to:
val blueM = "blue" map { (s: String) => 4 }

Controlling tab completion

Most parsers have reasonable default tab completion behavior. For example,
the string and character literal parsers will suggest the underlying literal for
an empty input string. However, it is impractical to determine the valid com-
pletions for charClass, since it accepts an arbitrary predicate. The examples
method defines explicit completions for such a parser:

val digit = charClass(_.isDigit, "digit").examples("0", "1", "2")

Tab completion will use the examples as suggestions. The other method con-
trolling tab completion is token. The main purpose of token is to determine

363

the boundaries for suggestions. For example, if your parser is:

("fg" | "bg") ~ ' ' ~ ("green" | "blue")

then the potential completions on empty input are: console fg green fg
blue bg green bg blue

Typically, you want to suggest smaller segments or the number of suggestions
becomes unmanageable. A better parser is:

token(("fg" | "bg") ~ ' ') ~ token("green" | "blue")

Now, the initial suggestions would be (with _ representing a space): console
fg_ bg_

Be careful not to overlap or nest tokens, as in token("green" ~ token("blue")).
The behavior is unspecified (and should generate an error in the future), but
typically the outer most token definition will be used.

Dependent parsers

Sometimes a parser must analyze some data and then more data needs to be
parsed, and it is dependent on the previous one.
The key for obtaining this behaviour is to use the flatMap function.

As an example, it will shown how to select several items from a list of valid ones
with completion, but no duplicates are possible. A space is used to separate the
different items.

def select1(items: Iterable[String]) =
token(Space ~> StringBasic.examples(FixedSetExamples(items)))

def selectSome(items: Seq[String]): Parser[Seq[String]] = {
select1(items).flatMap { v =>
val remaining = items filter { _ != v }
if (remaining.size == 0)
success(v :: Nil)

else
selectSome(remaining).?.map(v +: _.getOrElse(Seq()))

}

As you can see, the flatMap function provides the previous value. With this
info, a new parser is constructed for the remaining items. The map combinator
is also used in order to transform the output of the parser.

The parser is called recursively, until it is found the trivial case of no possible
choices.

364

State and actions

State is the entry point to all available information in sbt. The key methods
are:

• definedCommands: Seq[Command] returns all registered Command defi-
nitions

• remainingCommands: List[Exec] returns the remaining commands to be
run

• attributes: AttributeMap contains generic data.

The action part of a command performs work and transforms State. The follow-
ing sections discuss State => State transformations. As mentioned previously,
a command will typically handle a parsed value as well: (State, T) => State.

Command-related data

A Command can modify the currently registered commands or the commands
to be executed. This is done in the action part by transforming the (immutable)
State provided to the command. A function that registers additional power
commands might look like:

val powerCommands: Seq[Command] = ...

val addPower: State => State =
(state: State) =>
state.copy(definedCommands =
(state.definedCommands ++ powerCommands).distinct

)

This takes the current commands, appends new commands, and drops dupli-
cates. Alternatively, State has a convenience method for doing the above:

val addPower2 = (state: State) => state ++ powerCommands

Some examples of functions that modify the remaining commands to execute:

val appendCommand: State => State =
(state: State) =>
state.copy(remainingCommands = state.remainingCommands :+ "cleanup")

val insertCommand: State => State =
(state: State) =>
state.copy(remainingCommands = "next-command" +: state.remainingCommands)

The first adds a command that will run after all currently specified commands
run. The second inserts a command that will run next. The remaining com-
mands will run after the inserted command completes.

365

../api/sbt/State$.html

To indicate that a command has failed and execution should not continue, return
state.fail.

(state: State) => {
val success: Boolean = ...
if(success) state else state.fail

}

Project-related data

Project-related information is stored in attributes. Typically, commands
won’t access this directly but will instead use a convenience method to extract
the most useful information:

val state: State
val extracted: Extracted = Project.extract(state)
import extracted._

Extracted provides:

• Access to the current build and project (currentRef)
• Access to initialized project setting data (structure.data)
• Access to session Settings and the original, permanent settings from .sbt

and .scala files (session.append and session.original, respectively)
• Access to the current Eval instance for evaluating Scala expressions in the

build context.

Project data

All project data is stored in structure.data, which is of type sbt.Settings[Scope].
Typically, one gets information of type T in the following way:

val key: SettingKey[T]
val scope: Scope
val value: Option[T] = key in scope get structure.data

Here, a SettingKey[T] is typically obtained from Keys and is the same type
that is used to define settings in .sbt files, for example. Scope selects the scope
the key is obtained for. There are convenience overloads of in that can be used
to specify only the required scope axes. See Structure.scala for where in and
other parts of the settings interface are defined. Some examples:

import Keys._
val extracted: Extracted
import extracted._

// get name of current project
val nameOpt: Option[String] = (currentRef / name).get(structure.data)

366

../api/sbt/Extracted.html
../api/sbt/compiler/Eval.html
../api/sbt/Keys$.html
../api/sbt/Scope.html
https://github.com/sbt/sbt/blob/develop/main-settings/src/main/scala/sbt/Structure.scala

// get the package options for the `Test/packageSrc` task or Nil if none are defined
val pkgOpts: Seq[PackageOption] = (currentRef / Test / packageSrc / packageOptions).get(structure.data).getOrElse(Nil)

BuildStructure contains information about build and project relationships. Key
members are:

units: Map[URI, LoadedBuildUnit]
root: URI

A URI identifies a build and root identifies the initial build loaded. Load-
edBuildUnit provides information about a single build. The key members of
LoadedBuildUnit are:

// Defines the base directory for the build
localBase: File

// maps the project ID to the Project definition
defined: Map[String, ResolvedProject]

ResolvedProject has the same information as the Project used in a
project/Build.scala except that ProjectReferences are resolved to
ProjectRefs.

Classpaths

Classpaths in sbt are of type Seq[Attributed[File]]. This allows tagging
arbitrary information to classpath entries. sbt currently uses this to associate
an Analysis with an entry. This is how it manages the information needed for
multi-project incremental recompilation. It also associates the ModuleID and
Artifact with managed entries (those obtained by dependency management).
When you only want the underlying Seq[File], use files:

val attributedClasspath: Seq[Attribute[File]] = ...
val classpath: Seq[File] = attributedClasspath.files

Running tasks

It can be useful to run a specific project task from a command (not from another
task) and get its result. For example, an IDE-related command might want to get
the classpath from a project or a task might analyze the results of a compilation.
The relevant method is Project.runTask, which has the following signature:

def runTask[T](taskKey: ScopedKey[Task[T]], state: State,
checkCycles: Boolean = false): Option[(State, Result[T])]

For example,

367

../api/sbt/internal/BuildStructure.html
../api/sbt/internal/LoadedBuildUnit.html
../api/sbt/internal/LoadedBuildUnit.html
../api/sbt/ResolvedProject.html
../api/sbt/ProjectReference.html
Commands.html

val eval: State => State = (state: State) => {

// This selects the main 'compile' task for the current project.
// The value produced by 'compile' is of type inc.Analysis,
// which contains information about the compiled code.
val taskKey = Compile / Keys.compile

// Evaluate the task
// None if the key is not defined
// Some(Inc) if the task does not complete successfully (Inc for incomplete)
// Some(Value(v)) with the resulting value
val result: Option[(State, Result[inc.Analysis])] = Project.runTask(taskKey, state)
// handle the result
result match
{

case None => // Key wasn't defined.
case Some((newState, Inc(inc))) => // error detail, inc is of type Incomplete, use Incomplete.show(inc.tpe) to get an error message
case Some((newState, Value(v))) => // do something with v: inc.Analysis

}
}

For getting the test classpath of a specific project, use this key:

val projectRef: ProjectRef = ...
val taskKey: Task[Seq[Attributed[File]]] =
(projectRef / Test / Keys.fullClasspath)

Using State in a task

To access the current State from a task, use the state task as an input. For
example,

myTask := ... state.value ...

Updating State in a task

It is also possible to update the sbt state in a task. To do this, the task must
return type StateTransform. The state will be transformed upon completion
of task evaluation. The StateTransform is constructed with a function from
State => State that accepts the previous value of the State and generates a
new state. For example:

import complete.DefaultParsers._
val counter = AttributeKey[Int]("counter")
val setCounter = inputKey[StateTransform]("Set the value of the counter attribute")
setCounter := {

368

val count = (Space ~> IntBasic).parsed
StateTransform(_.put(counter, count))

}

creates the input task setCounter that sets the counter attribute to some value.

Tasks/Settings: Motivation

This page motivates the task and settings system. You should already know
how to use tasks and settings, which are described in the getting started guide
and on the Tasks page.

An important aspect of the task system is to combine two common, related
steps in a build:

1. Ensure some other task is performed.
2. Use some result from that task.

Earlier versions of sbt configured these steps separately using

1. Dependency declarations
2. Some form of shared state

To see why it is advantageous to combine them, compare the situation to that
of deferring initialization of a variable in Scala. This Scala code is a bad way to
expose a value whose initialization is deferred:

// Define a variable that will be initialized at some point
// We don't want to do it right away, because it might be expensive
var foo: Foo = _

// Define a function to initialize the variable
def makeFoo(): Unit = ... initialize foo ...

Typical usage would be:

makeFoo()
doSomething(foo)

This example is rather exaggerated in its badness, but I claim it is nearly the
same situation as our two step task definitions. Particular reasons this is bad
include:

1. A client needs to know to call makeFoo() first.
2. foo could be changed by other code. There could be a def makeFoo2(),

for example.
3. Access to foo is not thread safe.

The first point is like declaring a task dependency, the second is like two tasks
modifying the same state (either project variables or files), and the third is a
consequence of unsynchronized, shared state.

369

Task-Graph.html
Tasks.html

In Scala, we have the built-in functionality to easily fix this: lazy val.

lazy val foo: Foo = ... initialize foo ...

with the example usage:

doSomething(foo)

Here, lazy val gives us thread safety, guaranteed initialization before access,
and immutability all in one, DRY construct. The task system in sbt does the
same thing for tasks (and more, but we won’t go into that here) that lazy val
did for our bad example.

A task definition must declare its inputs and the type of its output. sbt will
ensure that the input tasks have run and will then provide their results to the
function that implements the task, which will generate its own result. Other
tasks can use this result and be assured that the task has run (once) and be
thread-safe and typesafe in the process.

The general form of a task definition looks like:

myTask := {
val a: A = aTask.value
val b: B = bTask.value
... do something with a, b and generate a result ...

}

(This is only intended to be a discussion of the ideas behind tasks, so see the sbt
Tasks page for details on usage.) Here, aTask is assumed to produce a result of
type A and bTask is assumed to produce a result of type B.

Application

As an example, consider generating a zip file containing the binary jar, source jar,
and documentation jar for your project. First, determine what tasks produce the
jars. In this case, the input tasks are packageBin, packageSrc, and packageDoc
in the main Compile scope. The result of each of these tasks is the File for the
jar that they generated. Our zip file task is defined by mapping these package
tasks and including their outputs in a zip file. As good practice, we then return
the File for this zip so that other tasks can map on the zip task.

zip := {
val bin: File = (Compile / packageBin).value
val src: File = (Compile / packageSrc).value
val doc: File = (Compile / packageDoc).value
val out: File = zipPath.value
val inputs: Seq[(File,String)] = Seq(bin, src, doc) x Path.flat
IO.zip(inputs, out)

370

Tasks.html
Tasks.html

out
}

The val inputs line defines how the input files are mapped to paths in the
zip. See Mapping Files for details. The explicit types are not required, but are
included for clarity.

The zipPath input would be a custom task to define the location of the zip file.
For example:

zipPath := target.value / "out.zip"

Plugins and Best Practices

This part of the documentation has pages documenting particular sbt topics in
detail. Before reading anything in here, you will need the information in the
Getting Started Guide as a foundation.

General Best Practices

This page describes best practices for working with sbt.

project/ vs. ~/.sbt/

Anything that is necessary for building the project should go in project/. This
includes things like the web plugin. ~/.sbt/ should contain local customizations
and commands for working with a build, but are not necessary. An example is
an IDE plugin.

Local settings

There are two options for settings that are specific to a user. An example of
such a setting is inserting the local Maven repository at the beginning of the
resolvers list:

resolvers := {
val localMaven = "Local Maven Repository" at "file://"+Path.userHome.absolutePath+"/.m2/repository"
localMaven +: resolvers.value

}

1. Put settings specific to a user in a global .sbt file, such as
$HOME/.sbt/1.0/global.sbt. These settings will be applied to all
projects.

371

Mapping-Files.html
Getting-Started.html

2. Put settings in a .sbt file in a project that isn’t checked into version con-
trol, such as <project>/local.sbt. sbt combines the settings from mul-
tiple .sbt files, so you can still have the standard <project>/build.sbt
and check that into version control.

.sbtrc

Put commands to be executed when sbt starts up in a .sbtrc file, one per
line. These commands run before a project is loaded and are useful for defining
aliases, for example. sbt executes commands in $HOME/.sbtrc (if it exists) and
then <project>/.sbtrc (if it exists).

Generated files

Write any generated files to a subdirectory of the output directory, which is
specified by the target setting. This makes it easy to clean up after a build
and provides a single location to organize generated files. Any generated files
that are specific to a Scala version should go in crossTarget for efficient cross-
building.

For generating sources and resources, see Generating Files.

Don’t hard code

Don’t hard code constants, like the output directory target/. This is especially
important for plugins. A user might change the target setting to point to
build/, for example, and the plugin needs to respect that. Instead, use the
setting, like:

myDirectory := target.value / "sub-directory"

Don’t “mutate” files

A build naturally consists of a lot of file manipulation. How can we reconcile
this with the task system, which otherwise helps us avoid mutable state? One
approach, which is the recommended approach and the approach used by sbt’s
default tasks, is to only write to any given file once and only from a single task.

A build product (or by-product) should be written exactly once by only one
task. The task should then, at a minimum, provide the Files created as its
result. Another task that wants to use Files should map the task, simultaneously
obtaining the File reference and ensuring that the task has run (and thus the file
is constructed). Obviously you cannot do much about the user or other processes

372

Howto-Generating-Files.html

modifying the files, but you can make the I/O that is under the build’s control
more predictable by treating file contents as immutable at the level of Tasks.

For example:

lazy val makeFile = taskKey[File]("Creates a file with some content.")

// define a task that creates a file,
// writes some content, and returns the File
makeFile := {

val f: File = file("/tmp/data.txt")
IO.write(f, "Some content")
f

}

// The result of makeFile is the constructed File,
// so useFile can map makeFile and simultaneously
// get the File and declare the dependency on makeFile
useFile :=

doSomething(makeFile.value)

This arrangement is not always possible, but it should be the rule and not the
exception.

Use absolute paths

Construct only absolute Files. Either specify an absolute path

file("/home/user/A.scala")

or construct the file from an absolute base:

base / "A.scala"

This is related to the no hard coding best practice because the proper way
involves referencing the baseDirectory setting. For example, the following
defines the myPath setting to be the <base>/licenses/ directory.

myPath := baseDirectory.value / "licenses"

In Java (and thus in Scala), a relative File is relative to the current working di-
rectory. The working directory is not always the same as the build root directory
for a number of reasons.

The only exception to this rule is when specifying the base directory for a Project.
Here, sbt will resolve a relative File against the build root directory for you for
convenience.

373

Parser combinators

1. Use token everywhere to clearly delimit tab completion boundaries.
2. Don’t overlap or nest tokens. The behavior here is unspecified and will

likely generate an error in the future.
3. Use flatMap for general recursion. sbt’s combinators are strict to limit

the number of classes generated, so use flatMap like:

lazy val parser: Parser[Int] =
token(IntBasic) flatMap { i =>

if(i <= 0)
success(i)

else
token(Space ~> parser)

}

This example defines a parser a whitespace-delimited list of integers,
ending with a negative number, and returning that final, negative
number.

Plugins

There’s a getting started page focused on using existing plugins, which you may
want to read first.

A plugin is a way to use external code in a build definition. A plugin can
be a library used to implement a task (you might use Knockoff to write a
markdown processing task). A plugin can define a sequence of sbt settings that
are automatically added to all projects or that are explicitly declared for selected
projects. For example, a plugin might add a proguard task and associated
(overridable) settings. Finally, a plugin can define new commands (via the
commands setting).

sbt 0.13.5 introduces auto plugins, with improved dependency management
among the plugins and explicitly scoped auto importing. Going forward, our
recommendation is to migrate to the auto plugins. The Plugins Best Practices
page describes the currently evolving guidelines to writing sbt plugins. See also
the general best practices.

Using an auto plugin

A common situation is when using a binary plugin published to a repository.
You can create project/plugins.sbt with all of the desired sbt plugins, any
general dependencies, and any necessary repositories:

374

Using-Plugins.html
https://github.com/tristanjuricek/knockoff/
Plugins-Best-Practices.html
Best-Practices.html

addSbtPlugin("org.example" % "plugin" % "1.0")
addSbtPlugin("org.example" % "another-plugin" % "2.0")

// plain library (not an sbt plugin) for use in the build definition
libraryDependencies += "org.example" % "utilities" % "1.3"

resolvers += "Example Plugin Repository" at "https://example.org/repo/"

Many of the auto plugins automatically add settings into projects, however,
some may require explicit enablement. Here’s an example:

lazy val util = (project in file("util"))
.enablePlugins(FooPlugin, BarPlugin)
.disablePlugins(plugins.IvyPlugin)
.settings(
name := "hello-util"

)

See using plugins in the Getting Started guide for more details on using plugins.

By Description

A plugin definition is a project under project/ folder. This project’s classpath
is the classpath used for build definitions in project/ and any .sbt files in the
project’s base directory. It is also used for the eval and set commands.

Specifically,

1. Managed dependencies declared by the project/ project are retrieved
and are available on the build definition classpath, just like for a normal
project.

2. Unmanaged dependencies in project/lib/ are available to the build def-
inition, just like for a normal project.

3. Sources in the project/ project are the build definition files and are com-
piled using the classpath built from the managed and unmanaged depen-
dencies.

4. Project dependencies can be declared in project/plugins.sbt (similarly
to build.sbt file in a normal project) and will be available to the build
definitions.

The build definition classpath is searched for sbt/sbt.autoplugins descriptor
files containing the names of sbt.AutoPlugin implementations.

The reload plugins command changes the current build to the (root) project’s
project/ build definition. This allows manipulating the build definition project
like a normal project. reload return changes back to the original build. Any
session settings for the plugin definition project that have not been saved are
dropped.

375

Using-Plugins.html

An auto plugin is a module that defines settings to automatically inject into
projects. In addition an auto plugin provides the following feature:

• Automatically import selective names to .sbt files and the eval and set
commands.

• Specify plugin dependencies to other auto plugins.
• Automatically activate itself when all dependencies are present.
• Specify projectSettings, buildSettings, and globalSettings as ap-

propriate.

Plugin dependencies

When a traditional plugin wanted to reuse some functionality from an existing
plugin, it would pull in the plugin as a library dependency, and then it would
either:

1. add the setting sequence from the dependency as part of its own setting
sequence, or

2. tell the build users to include them in the right order.

This becomes complicated as the number of plugins increase within an appli-
cation, and becomes more error prone. The main goal of auto plugin is to
alleviate this setting dependency problem. An auto plugin can depend on other
auto plugins and ensure these dependency settings are loaded first.

Suppose we have the SbtLessPlugin and the SbtCoffeeScriptPlugin, which
in turn depends on the SbtJsTaskPlugin, SbtWebPlugin, and JvmPlugin. In-
stead of manually activating all of these plugins, a project can just activate the
SbtLessPlugin and SbtCoffeeScriptPlugin like this:

lazy val root = (project in file("."))
.enablePlugins(SbtLessPlugin, SbtCoffeeScriptPlugin)

This will pull in the right setting sequence from the plugins in the right order.
The key notion here is you declare the plugins you want, and sbt can fill in the
gap.

A plugin implementation is not required to produce an auto plugin, however. It
is a convenience for plugin consumers and because of the automatic nature, it
is not always appropriate.

Global plugins

The $HOME/.sbt/1.0/plugins/ directory is treated as a global plugin definition
project. It is a normal sbt project whose classpath is available to all sbt project
definitions for that user as described above for per-project plugins.

376

Creating an auto plugin

A minimal sbt plugin is a Scala library that is built against the version of
Scala that sbt runs (currently, 2.12.18) or a Java library. Nothing special needs
to be done for this type of library. A more typical plugin will provide sbt
tasks, commands, or settings. This kind of plugin may provide these settings
automatically or make them available for the user to explicitly integrate.

To make an auto plugin, create a project and enable SbtPlugin.

ThisBuild / version := "0.1.0-SNAPSHOT"
ThisBuild / organization := "com.example"
ThisBuild / homepage := Some(url("https://github.com/sbt/sbt-hello"))

lazy val root = (project in file("."))
.enablePlugins(SbtPlugin)
.settings(
name := "sbt-hello",
pluginCrossBuild / sbtVersion := {
scalaBinaryVersion.value match {

case "2.12" => "1.2.8" // set minimum sbt version
}

}
)

Some details to note:

• sbt plugins must be compiled with Scala 2.12.x that sbt itself is compiled
in. By NOT specifying scalaVersion, sbt will default to the Scala version
suited for a plugin.

• By default sbt plugin is compiled with whichever the sbt version you are
using. Because sbt does NOT keep forward compatibility, that would
typically require all of your plugin users to upgrade to the latest too.
pluginCrossBuild / sbtVersion is an optional setting to compile your
plugin against an older version of sbt, which allows the plugin users to
choose from a range of sbt versions.

Then, write the plugin code and publish your project to a repository. The plugin
can be used as described in the previous section.

First, in an appropriate namespace, define your auto plugin object by extending
sbt.AutoPlugin.

projectSettings and buildSettings

With auto plugins, all provided settings (e.g. assemblySettings) are provided
by the plugin directly via the projectSettings method. Here’s an example
plugin that adds a task named hello to sbt projects:

377

package sbthello

import sbt._
import Keys._

object HelloPlugin extends AutoPlugin {
override def trigger = allRequirements

object autoImport {
val helloGreeting = settingKey[String]("greeting")
val hello = taskKey[Unit]("say hello")

}

import autoImport._
override lazy val globalSettings: Seq[Setting[_]] = Seq(
helloGreeting := "hi",

)

override lazy val projectSettings: Seq[Setting[_]] = Seq(
hello := {

val s = streams.value
val g = helloGreeting.value
s.log.info(g)

}
)

}

If the plugin needs to append settings at the build-level (that is, in ThisBuild)
there’s a buildSettings method. The settings returned here are guaranteed to
be added to a given build scope only once regardless of how many projects for
that build activate this AutoPlugin.

override def buildSettings: Seq[Setting[_]] = Nil

The globalSettings is appended once to the global settings (in Global).
These allow a plugin to automatically provide new functionality or new de-
faults. One main use of this feature is to globally add commands, such as for
IDE plugins.

override def globalSettings: Seq[Setting[_]] = Nil

Use globalSettings to define the default value of a setting.

Implementing plugin dependencies

Next step is to define the plugin dependencies.

package sbtless

378

import sbt._
import Keys._
object SbtLessPlugin extends AutoPlugin {

override def requires = SbtJsTaskPlugin
override lazy val projectSettings = ...

}

The requires method returns a value of type Plugins, which is a DSL for
constructing the dependency list. The requires method typically contains one
of the following values:

• empty (No plugins)
• other auto plugins
• && operator (for defining multiple dependencies)

Root plugins and triggered plugins

Some plugins should always be explicitly enabled on projects. we call these root
plugins, i.e. plugins that are “root” nodes in the plugin dependency graph. An
auto plugin is by default a root plugin.

Auto plugins also provide a way for plugins to automatically attach themselves
to projects if their dependencies are met. We call these triggered plugins, and
they are created by overriding the trigger method.

For example, we might want to create a triggered plugin that can append com-
mands automatically to the build. To do this, set the requires method to
return empty, and override the trigger method with allRequirements.

package sbthello

import sbt._
import Keys._

object HelloPlugin2 extends AutoPlugin {
override def trigger = allRequirements
override lazy val buildSettings = Seq(commands += helloCommand)
lazy val helloCommand =
Command.command("hello") { (state: State) =>
println("Hi!")
state

}
}

The build user still needs to include this plugin in project/plugins.sbt, but
it is no longer needed to be included in build.sbt. This becomes more in-
teresting when you do specify a plugin with requirements. Let’s modify the

379

SbtLessPlugin so that it depends on another plugin:

package sbtless
import sbt._
import Keys._
object SbtLessPlugin extends AutoPlugin {

override def trigger = allRequirements
override def requires = SbtJsTaskPlugin
override lazy val projectSettings = ...

}

As it turns out, PlayScala plugin (in case you didn’t know, the Play framework
is an sbt plugin) lists SbtJsTaskPlugin as one of its required plugins. So, if we
define a build.sbt with:

lazy val root = (project in file("."))
.enablePlugins(PlayScala)

then the setting sequence from SbtLessPlugin will be automatically appended
somewhere after the settings from PlayScala.

This allows plugins to silently, and correctly, extend existing plugins with more
features. It also can help remove the burden of ordering from the user, allowing
the plugin authors greater freedom and power when providing feature for their
users.

Controlling the import with autoImport

When an auto plugin provides a stable field such as val or object named
autoImport, the contents of the field are wildcard imported in set, eval, and
.sbt files. In the next example, we’ll replace our hello command with a task
to get the value of greeting easily. In practice, it’s recommended to prefer
settings or tasks to commands.

package sbthello

import sbt._
import Keys._

object HelloPlugin3 extends AutoPlugin {
object autoImport {

val greeting = settingKey[String]("greeting")
val hello = taskKey[Unit]("say hello")

}
import autoImport._
override def trigger = allRequirements
override lazy val buildSettings = Seq(
greeting := "Hi!",

380

Plugins-Best-Practices.html#Use+settings+and+tasks.+Avoid+commands.
Plugins-Best-Practices.html#Use+settings+and+tasks.+Avoid+commands.

hello := helloTask.value)
lazy val helloTask =
Def.task {
println(greeting.value)

}
}

Typically, autoImport is used to provide new keys - SettingKeys, TaskKeys, or
InputKeys - or core methods without requiring an import or qualification.

Example Plugin

An example of a typical plugin:

build.sbt:

ThisBuild / version := "0.1.0-SNAPSHOT"
ThisBuild / organization := "com.example"
ThisBuild / homepage := Some(url("https://github.com/sbt/sbt-obfuscate"))

lazy val root = (project in file("."))
.enablePlugins(SbtPlugin)
.settings(
name := "sbt-obfuscate",
pluginCrossBuild / sbtVersion := {
scalaBinaryVersion.value match {

case "2.12" => "1.2.8" // set minimum sbt version
}

}
)

ObfuscatePlugin.scala:

package sbtobfuscate

import sbt._
import sbt.Keys._

object ObfuscatePlugin extends AutoPlugin {
// by defining autoImport, the settings are automatically imported into user's `*.sbt`
object autoImport {
// configuration points, like the built-in `version`, `libraryDependencies`, or `compile`
val obfuscate = taskKey[Seq[File]]("Obfuscates files.")
val obfuscateLiterals = settingKey[Boolean]("Obfuscate literals.")

// default values for the tasks and settings
lazy val baseObfuscateSettings: Seq[Def.Setting[_]] = Seq(
obfuscate := {

381

Obfuscate(sources.value, (obfuscate / obfuscateLiterals).value)
},
obfuscate / obfuscateLiterals := false

)
}

import autoImport._
override def requires = sbt.plugins.JvmPlugin

// This plugin is automatically enabled for projects which are JvmPlugin.
override def trigger = allRequirements

// a group of settings that are automatically added to projects.
override val projectSettings =
inConfig(Compile)(baseObfuscateSettings) ++
inConfig(Test)(baseObfuscateSettings)

}

object Obfuscate {
def apply(sources: Seq[File], obfuscateLiterals: Boolean): Seq[File] = {
// TODO obfuscate stuff!
sources

}
}

Usage example

A build definition that uses the plugin might look like. obfuscate.sbt:

obfuscate / obfuscateLiterals := true

Global plugins example

The simplest global plugin definition is declaring a library or plugin in
$HOME/.sbt/1.0/plugins/build.sbt:

libraryDependencies += "org.example" %% "example-plugin" % "0.1"

This plugin will be available for every sbt project for the current user.

In addition:

• Jars may be placed directly in $HOME/.sbt/1.0/plugins/lib/ and will
be available to every build definition for the current user.

• Dependencies on plugins built from source may be declared in
$HOME/.sbt/1.0/plugins/project/Build.scala as described at
.scala build definition.

382

Full-Def.html

• A Plugin may be directly defined in Scala source files in $HOME/.sbt/1.0/plugins/,
such as $HOME/.sbt/1.0/plugins/MyPlugin.scala. $HOME/.sbt/1.0/plugins//build.sbt
should contain sbtPlugin := true. This can be used for quicker
turnaround when developing a plugin initially:

1. Edit the global plugin code
2. reload the project you want to use the modified plugin in
3. sbt will rebuild the plugin and use it for the project. Additionally, the

plugin will be available in other projects on the machine without re-
compiling again. This approach skips the overhead of publishLocal
and cleaning the plugins directory of the project using the plugin.

These are all consequences of $HOME/.sbt/1.0/plugins/ being a standard
project whose classpath is added to every sbt project’s build definition.

Using a library in a build definition example

As an example, we’ll add the Grizzled Scala library as a plugin. Although
this does not provide sbt-specific functionality, it demonstrates how to declare
plugins.

1a) Manually managed

1. Download the jar manually from https://oss.sonatype.org/content/r
epositories/releases/org/clapper/grizzled-scala_2.8.1/1.0.4/grizzled-
scala_2.8.1-1.0.4.jar

2. Put it in project/lib/

1b) Automatically managed: direct editing approach

Edit project/plugins.sbt to contain:

libraryDependencies += "org.clapper" %% "grizzled-scala" % "1.0.4"

If sbt is running, do reload.

1c) Automatically managed: command-line approach

We can change to the plugins project in project/ using reload plugins.

$ sbt
> reload plugins
[info] Set current project to default (in build file:/Users/sbt/demo2/project/)
>

Then, we can add dependencies like usual and save them to project/plugins.sbt.
It is useful, but not required, to run update to verify that the dependencies are
correct.

383

https://oss.sonatype.org/content/repositories/releases/org/clapper/grizzled-scala_2.8.1/1.0.4/grizzled-scala_2.8.1-1.0.4.jar
https://oss.sonatype.org/content/repositories/releases/org/clapper/grizzled-scala_2.8.1/1.0.4/grizzled-scala_2.8.1-1.0.4.jar
https://oss.sonatype.org/content/repositories/releases/org/clapper/grizzled-scala_2.8.1/1.0.4/grizzled-scala_2.8.1-1.0.4.jar

> set libraryDependencies += "org.clapper" %% "grizzled-scala" % "1.0.4"
...
> update
...
> session save
...

To switch back to the main project use reload return:

> reload return
[info] Set current project to root (in build file:/Users/sbt/demo2/)

1d) Project dependency

This variant shows how to use sbt’s external project support to declare a source
dependency on a plugin. This means that the plugin will be built from source
and used on the classpath.

Edit project/plugins.sbt

lazy val root = (project in file(".")).dependsOn(assemblyPlugin)

lazy val assemblyPlugin = RootProject(uri("git://github.com/sbt/sbt-assembly"))

If sbt is running, run reload.

Note that this approach can be useful when developing a plugin. A project that
uses the plugin will rebuild the plugin on reload. This saves the intermediate
steps of publishLocal and update. It can also be used to work with the
development version of a plugin from its repository.

It is however recommended to explicitly specify the commit or tag by appending
it to the repository as a fragment:

lazy val assemblyPlugin = uri("git://github.com/sbt/sbt-assembly#0.9.1")

One caveat to using this method is that the local sbt will try to run the remote
plugin’s build. It is quite possible that the plugin’s own build uses a different
sbt version, as many plugins cross-publish for several sbt versions. As such, it
is recommended to stick with binary artifacts when possible.

2) Use the library

Grizzled Scala is ready to be used in build definitions. This includes the eval
and set commands and .sbt and project/*.scala files.

> eval grizzled.sys.os

In a build.sbt file:

384

import grizzled.sys._
import OperatingSystem._

libraryDependencies ++=
if(os == Windows)

Seq("org.example" % "windows-only" % "1.0")
else

Seq.empty

Publishing a plugin

Plugins can be published like any other projects. When publishing your plugin
to a Maven-layout repository, use sbt 1.9.x or above.

However, there is one caveat if you attempt to publish your plugin to a repository
that follows the Maven layout.

If your artifacts repository expect artifacts to be compliant with Maven layout
and rejects artifacts that do not adhere to it you can: 1. (recommended) If you
and consumers of your plugin use sbt 1.9.x or above

Since sbt 1.9, it tries to publish any plugin with both the new and legacy
Maven style (for backward compatibility). The legacy Maven style is
not fully compatible with Maven layout. You need to disable it with:
sbtPluginPublishLegacyMavenStyle := false Notice that you won’t be
able to consume this plugin with sbt older than 1.9, as it can only resolve the
legacy Maven style (or you need to use the trick described in sbt-vspp). 3. If
you use sbt < 1.9.x

You can use https://github.com/esbeetee/sbt-vspp/ 5. If you cannot use sbt
1.9.x and you cannot/don’t want to use sbt-vspp

There should be an option like Suppress POM Consistency Checks in your
artifactory settings that will allow you to submit artifacts even if they don’t
fully follow Maven layout.

You can find more details about this in the following issue.

Best Practices

If you’re a plugin writer, please consult the Plugins Best Practices page; it
contains a set of guidelines to help you ensure that your plugin is consistent and
plays well with other plugins.

For cross building sbt plugins see also Cross building plugins.

385

https://github.com/esbeetee/sbt-vspp
https://github.com/sbt/sbt/issues/3410
Plugins-Best-Practices.html
Cross-Build-Plugins.html

Plugins Best Practices

This page is intended primarily for sbt plugin authors. This page assumes you’ve
read using plugins and Plugins.

A plugin developer should strive for consistency and ease of use. Specifically:

• Plugins should play well with other plugins. Avoiding namespace clashes
(in both sbt and Scala) is paramount.

• Plugins should follow consistent conventions. The experiences of an sbt
user should be consistent, no matter what plugins are pulled in.

Here are some current plugin best practices.

Note: Best practices are evolving, so check back frequently.

Key naming convention: Use prefix

Sometimes, you need a new key, because there is no existing sbt key. In this
case, use a plugin-specific prefix.

package sbtassembly

import sbt._, Keys._

object AssemblyPlugin extends AutoPlugin {
object autoImport {

val assembly = taskKey[File]("Builds a deployable fat jar.")
val assembleArtifact = settingKey[Boolean]("Enables (true) or disables (false) assembling an artifact.")
val assemblyOption = taskKey[AssemblyOption]("Configuration for making a deployable fat jar.")
val assembledMappings = taskKey[Seq[MappingSet]]("Keeps track of jar origins for each source.")

val assemblyPackageScala = taskKey[File]("Produces the scala artifact.")
val assemblyJarName = taskKey[String]("name of the fat jar")
val assemblyMergeStrategy = settingKey[String => MergeStrategy]("mapping from archive member path to merge strategy")

}

import autoImport._

....
}

In this approach, every val starts with assembly. A user of the plugin would
refer to the settings like this in build.sbt:

assembly / assemblyJarName := "something.jar"

Inside sbt shell, the user can refer to the setting in the same way:

386

Using-Plugins.html
Plugins.html

sbt:helloworld> show assembly/assemblyJarName
[info] helloworld-assembly-0.1.0-SNAPSHOT.jar

Avoid sbt 0.12 style key names where the key’s Scala identifier and shell uses
kebab-casing:

• BAD: val jarName = SettingKey[String]("assembly-jar-name")
• BAD: val jarName = SettingKey[String]("jar-name")
• GOOD: val assemblyJarName = taskKey[String]("name of the fat

jar")

Because there’s a single namespace for keys both in build.sbt and in sbt
shell, if different plugins use generic sounding key names like jarName and
excludedFiles they will cause name conflict.

Artifact naming convention

Use the sbt-$projectname scheme to name your library and artifact. A plugin
ecosystem with a consistent naming convention makes it easier for users to tell
whether a project or dependency is an SBT plugin.

If the project’s name is foobar the following holds:

• BAD: foobar
• BAD: foobar-sbt
• BAD: sbt-foobar-plugin
• GOOD: sbt-foobar

If your plugin provides an obvious “main” task, consider naming it foobar or
foobar... to make it more intuitive to explore the capabilities of your plugin
within the sbt shell and tab-completion.

(optional) Plugin naming convention

Name your plugin as FooBarPlugin.

Don’t use default package

Users who have their build files in some package will not be able to use your
plugin if it’s defined in default (no-name) package.

Get your plugins known

Make sure people can find your plugin. Here are some of the recommended
steps:

387

1. Mention [@scala_sbt](https://twitter.com/scala_sbt) in your announce-
ment, and we will RT it.

2. Send a pull request to sbt/website and add your plugin on the plugins list.

Reuse existing keys

sbt has a number of predefined keys. Where possible, reuse them in your plugin.
For instance, don’t define:

val sourceFiles = settingKey[Seq[File]]("Some source files")

Instead, reuse sbt’s existing sources key.

Use settings and tasks. Avoid commands.

Your plugin should fit in naturally with the rest of the sbt ecosystem. The first
thing you can do is to avoid defining commands, and use settings and tasks
and task-scoping instead (see below for more on task-scoping). Most of the
interesting things in sbt like compile, test and publish are provided using
tasks. Tasks can take advantage of duplication reduction and parallel execution
by the task engine. With features like ScopeFilter, many of the features that
previously required commands are now possible using tasks.

Settings can be composed from other settings and tasks. Tasks can be composed
from other tasks and input tasks. Commands, on the other hand, cannot be
composed from any of the above. In general, use the minimal thing that you
need. One legitimate use of commands may be using plugin to access the build
definition itself not the code. sbt-inspectr was implemented using a command
before it became inspect tree.

Provide core feature in a plain old Scala object

The core feature of sbt’s package task, for example, is implemented in
sbt.Package, which can be called via its apply method. This allows greater
reuse of the feature from other plugins such as sbt-assembly, which in return
implements sbtassembly.Assembly object to implement its core feature.

Follow their lead, and provide core feature in a plain old Scala object.

Configuration advice

If your plugin introduces either a new set of source code or its own library
dependencies, only then you want your own configuration.

388

https://github.com/sbt/website
Communitiy-Plugins.html
../api/sbt/Keys$.html
Commands.html
Tasks.html
Tasks.html#ScopeFilter
https://github.com/eed3si9n/sbt-inspectr/blob/aa88bfac609e4668d0ad8ac220e4ef5fb1c3b9f5/src/main/scala/sbtinspectr/InspectrCommand.scala
../api/sbt/Package$.html

You probably won’t need your own configuration

Configurations should not be used to namespace keys for a plugin. If you’re
merely adding tasks and settings, don’t define your own configuration. Instead,
reuse an existing one or scope by the main task (see below).

package sbtwhatever

import sbt._, Keys._

object WhateverPlugin extends sbt.AutoPlugin {
override def requires = plugins.JvmPlugin
override def trigger = allRequirements

object autoImport {
// BAD sample
lazy val Whatever = config("whatever") extend(Compile)
lazy val specificKey = settingKey[String]("A plugin specific key")

}
import autoImport._
override lazy val projectSettings = Seq(
Whatever / specificKey := "another opinion" // DON'T DO THIS

)
}

When to define your own configuration

If your plugin introduces either a new set of source code or its own library de-
pendencies, only then you want your own configuration. For instance, suppose
you’ve built a plugin that performs fuzz testing that requires its own fuzzing
library and fuzzing source code. scalaSource key can be reused similar to
Compile and Test configuration, but scalaSource scoped to Fuzz configura-
tion (denoted as scalaSource in Fuzz) can point to src/fuzz/scala so it is
distinct from other Scala source directories. Thus, these three definitions use
the same key, but they represent distinct values. So, in a user’s build.sbt, we
might see:

Fuzz / scalaSource := baseDirectory.value / "source" / "fuzz" / "scala"

Compile / scalaSource := baseDirectory.value / "source" / "main" / "scala"

In the fuzzing plugin, this is achieved with an inConfig definition:

package sbtfuzz

import sbt._, Keys._

object FuzzPlugin extends sbt.AutoPlugin {

389

override def requires = plugins.JvmPlugin
override def trigger = allRequirements

object autoImport {
lazy val Fuzz = config("fuzz") extend(Compile)

}
import autoImport._

lazy val baseFuzzSettings: Seq[Def.Setting[_]] = Seq(
test := {
println("fuzz test")

}
)
override lazy val projectSettings = inConfig(Fuzz)(baseFuzzSettings)

}

When defining a new type of configuration, e.g.

lazy val Fuzz = config("fuzz") extend(Compile)

should be used to create a configuration. Configurations actually tie into depen-
dency resolution (with Ivy) and can alter generated pom files.

Playing nice with configurations

Whether you ship with a configuration or not, a plugin should strive to support
multiple configurations, including those created by the build user. Some tasks
that are tied to a particular configuration can be re-used in other configurations.
While you may not see the need immediately in your plugin, some project may
and will ask you for the flexibility.

Provide raw settings and configured settings

Split your settings by the configuration axis like so:

package sbtobfuscate

import sbt._, Keys._

object ObfuscatePlugin extends sbt.AutoPlugin {
override def requires = plugins.JvmPlugin
override def trigger = allRequirements

object autoImport {
lazy val obfuscate = taskKey[Seq[File]]("obfuscate the source")
lazy val obfuscateStylesheet = settingKey[File]("obfuscate stylesheet")

}

390

import autoImport._
lazy val baseObfuscateSettings: Seq[Def.Setting[_]] = Seq(
obfuscate := Obfuscate((obfuscate / sources).value),
obfuscate / sources := sources.value

)
override lazy val projectSettings = inConfig(Compile)(baseObfuscateSettings)

}

// core feature implemented here
object Obfuscate {

def apply(sources: Seq[File]): Seq[File] = {
sources

}
}

The baseObfuscateSettings value provides base configuration for the plu-
gin’s tasks. This can be re-used in other configurations if projects require it.
The obfuscateSettings value provides the default Compile scoped settings
for projects to use directly. This gives the greatest flexibility in using features
provided by a plugin. Here’s how the raw settings may be reused:

import sbtobfuscate.ObfuscatePlugin

lazy val app = (project in file("app"))
.settings(inConfig(Test)(ObfuscatePlugin.baseObfuscateSettings))

Scoping advice

In general, if a plugin provides keys (settings and tasks) with the widest scoping,
and refer to them with the narrowest scoping, it will give the maximum flexibility
to the build users.

Provide default values in globalSettings

If the default value of your settings or task does not transitively depend on
a project-level settings (such as baseDirectory, compile, etc), define it in
globalSettings.

For example, in sbt.Defaults keys related to publishing such as licenses,
developers, and scmInfo are all defined at the Global scope, typically to
empty values like Nil and None.

package sbtobfuscate

import sbt._, Keys._

object ObfuscatePlugin extends sbt.AutoPlugin {

391

override def requires = plugins.JvmPlugin
override def trigger = allRequirements

object autoImport {
lazy val obfuscate = taskKey[Seq[File]]("obfuscate the source")
lazy val obfuscateOption = settingKey[ObfuscateOption]("options to configure obfuscate")

}
import autoImport._
override lazy val globalSettings = Seq(
obfuscateOption := ObfuscateOption()

)

override lazy val projectSettings = inConfig(Compile)(
obfuscate := {
Obfuscate(
(obfuscate / sources).value,
(obfuscate / obfuscateOption).value

)
},
obfuscate / sources := sources.value

)
}

// core feature implemented here
object Obfuscate {

def apply(sources: Seq[File], opt: ObfuscateOption): Seq[File] = {
sources

}
}

In the above, obfuscateOption is set a default made-up value in the
globalSettings; but is used as (obfuscate / obfuscateOption) in the
projectSettings. This lets the user either set obfuscate / obfuscateOption
at a particular subproject level, or scoped to ThisBuild affecting all subprojects:

ThisBuild / obfuscate / obfuscateOption := ObfuscateOption().withX(true)

Giving keys default values in global scope requires knowing that every key (if
any) used to define that key must also be defined in global scope, otherwise it
will fail at load time.

Using a “main” task scope for settings

Sometimes you want to define some settings for a particular “main” task in your
plugin. In this instance, you can scope your settings using the task itself. See
the baseObfuscateSettings:

392

lazy val baseObfuscateSettings: Seq[Def.Setting[_]] = Seq(
obfuscate := Obfuscate((obfuscate / sources).value),
obfuscate / sources := sources.value

)

In the above example, obfuscate / sources is scoped under the main task,
obfuscate.

Rewiring existing keys in globalSettings

There may be times when you need to rewire an existing key in globalSettings.
The general rule is be careful what you touch.

Care should be taken to ensure previous settings from other plugins are not
ignored. e.g. when creating a new onLoad handler, ensure that the previous
onLoad handler is not removed.

package sbtsomething

import sbt._, Keys._

object MyPlugin extends AutoPlugin {
override def requires = plugins.JvmPlugin
override def trigger = allRequirements

override val globalSettings: Seq[Def.Setting[_]] = Seq(
Global / onLoad := (Global / onLoad).value andThen { state =>
... return new state ...

}
)

}

Setting up GitHub Actions with sbt

GitHub Actions is a workflow system by GitHub that supports continuous in-
tegration (CI) and continuous deployment (CD). As CI/CD feature was intro-
duced in 2019, it’s a newcomer in the CI/CD field, but it quickly rised to the
de-facto standard CI solution for open source Scala projects.

Set project/build.properties

Continuous integration is a great way of checking that your code works out-
side of your machine. If you haven’t created one already, make sure to create
project/build.properties and explicitly set the sbt.version number:

sbt.version=1.9.8

393

https://docs.github.com/en/free-pro-team@latest/actions
https://github.blog/2019-08-08-github-actions-now-supports-ci-cd/

Your build will now use 1.9.8.

Read the GitHub Actions manual

A treasure trove of Github Actions tricks can be found in the Github Actions
official documentation, including the Reference. Use this guide as an inspiration,
but consult the official source for more details.

Basic setup

Setting up your build for GitHub Actions is mostly about setting up
.github/workflows/ci.yml. Here’s what a minimal CI workflow could look
like using setup-java:

name: CI
on:
pull_request:
push:

jobs:
test:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4

- name: Setup JDK
uses: actions/setup-java@v3
with:
distribution: temurin
java-version: 8

- name: Build and Test
run: sbt -v +test

Custom JVM options

The default JVM options are provided by the official sbt runner adopted by
setup-java, and it should work for most cases. If you do decide to customize it,
use -v option to let the script output the current options first:

Executing command line:
java
-Dfile.encoding=UTF-8
-Xms1024m
-Xmx1024m
-Xss4M

394

https://docs.github.com/en/free-pro-team@latest/actions
https://docs.github.com/en/free-pro-team@latest/actions/reference
https://github.com/actions/setup-java
https://github.com/actions/setup-java

-XX:ReservedCodeCacheSize=128m
-jar
/usr/share/sbt/bin/sbt-launch.jar

We can define JAVA_OPTS and JVM_OPTS environment variables to override this.

name: CI
on:
pull_request:
push:

jobs:
test:
runs-on: ubuntu-latest
env:
define Java options for both official sbt and sbt-extras
JAVA_OPTS: -Xms2048M -Xmx2048M -Xss6M -XX:ReservedCodeCacheSize=256M -Dfile.encoding=UTF-8
JVM_OPTS: -Xms2048M -Xmx2048M -Xss6M -XX:ReservedCodeCacheSize=256M -Dfile.encoding=UTF-8

steps:
- name: Checkout
uses: actions/checkout@v4

- name: Setup JDK
uses: actions/setup-java@v3
with:
distribution: temurin
java-version: 8

- name: Build and Test
run: sbt -v +test

Again, let’s check the log to see if the flags are taking effect:

Executing command line:
[process_args] java_version = '8'
java
-Xms2048M
-Xmx2048M
-Xss6M
-XX:ReservedCodeCacheSize=256M
-Dfile.encoding=UTF-8
-jar
/usr/share/sbt/bin/sbt-launch.jar
+test

Caching

You can speed up your sbt builds on GitHub Actions by caching various artifacts
in-between the jobs.

395

The action setup-java has built-in support for caching artifacts downloaded
by sbt when loading the build or when building the project.

To use it, set the input parameter cache of the action setup-java to the value
"sbt":

- name: Setup JDK
uses: actions/setup-java@v3
with:
distribution: temurin
java-version: 8
cache: sbt

- name: Build and test
run: sbt -v +test

Note the added line cache: sbt.

Overall, the use of caching should shave off a few minutes of build time per job.

Build matrix

When creating a continous integration job, it’s fairly common to split up the
task into multiple jobs that runs in parallel. For example, we could:

• Run identical tests on JDK 8, JDK 11, Linux, macOS, and Windows
• Run different subset of tests on the same JDK, OS, and other setups

Both use cases are possible using the build matrix. The point here is that we
would like to mostly reuse the steps except for a few variance. For tasks that
do not overlap in steps (like testing vs deployment), it might be better to just
create a different job or a new workflow.

Here’s an example of forming a build matrix using JDK version and operating
system.

name: CI
on:
pull_request:
push:

jobs:
test:
strategy:
fail-fast: false
matrix:
include:

- os: ubuntu-latest
java: 8

- os: ubuntu-latest
java: 17

396

https://docs.github.com/en/free-pro-team@latest/actions/reference/workflow-syntax-for-github-actions#jobsjob_idstrategy

- os: windows-latest
java: 17

runs-on: ${{ matrix.os }}
steps:
- name: Checkout
uses: actions/checkout@v4

- name: Setup JDK
uses: actions/setup-java@v3
with:
distribution: temurin
java-version: ${{ matrix.java }}

- name: Build and test
shell: bash
run: sbt -v +test

Note that there’s nothing magical about the os or java keys in the build matrix.

The keys you define become properties in the matrix context and
you can reference the property in other areas of your workflow file.

You can create an arbitrary key to iterate over! We can use this and create a
key named jobtype to split the work too.

name: CI
on:
pull_request:
push:

jobs:
test:
strategy:
fail-fast: false
matrix:
include:

- os: ubuntu-latest
java: 17
jobtype: 1

- os: ubuntu-latest
java: 17
jobtype: 2

- os: ubuntu-latest
java: 17
jobtype: 3

runs-on: ${{ matrix.os }}
steps:
- name: Checkout
uses: actions/checkout@v4

- name: Setup JDK
uses: actions/setup-java@v3

397

with:
distribution: temurin
java-version: ${{ matrix.java }}

- name: Build and test (1)
if: ${{ matrix.jobtype == 1 }}
shell: bash
run: |
sbt -v "mimaReportBinaryIssues; scalafmtCheckAll; +test;"

- name: Build and test (2)
if: ${{ matrix.jobtype == 2 }}
shell: bash
run: |
sbt -v "scripted actions/*"

- name: Build and test (3)
if: ${{ matrix.jobtype == 3 }}
shell: bash
run: |
sbt -v "dependency-management/*"

Sample .github/workflows/ci.yml setting

Here’s a sample that puts them all together. Remember, most of the sections
are optional.

name: CI
on:
pull_request:
push:

jobs:
test:
strategy:
fail-fast: false
matrix:
include:

- os: ubuntu-latest
java: 17
jobtype: 1

- os: ubuntu-latest
java: 17
jobtype: 2

- os: windows-latest
java: 17
jobtype: 2

- os: ubuntu-latest
java: 17

398

jobtype: 3
runs-on: ${{ matrix.os }}
env:
define Java options for both official sbt and sbt-extras
JAVA_OPTS: -Xms2048M -Xmx2048M -Xss6M -XX:ReservedCodeCacheSize=256M -Dfile.encoding=UTF-8
JVM_OPTS: -Xms2048M -Xmx2048M -Xss6M -XX:ReservedCodeCacheSize=256M -Dfile.encoding=UTF-8

steps:
- name: Checkout
uses: actions/checkout@v4

- name: Setup JDK
uses: actions/setup-java@v3
with:
distribution: temurin
java-version: ${{ matrix.java }}
cache: sbt

- name: Build and test (1)
if: ${{ matrix.jobtype == 1 }}
shell: bash
run: |
sbt -v "mimaReportBinaryIssues; scalafmtCheckAll; +test;"

- name: Build and test (2)
if: ${{ matrix.jobtype == 2 }}
shell: bash
run: |
sbt -v "scripted actions/*"

- name: Build and test (3)
if: ${{ matrix.jobtype == 3 }}
shell: bash
run: |
sbt -v "dependency-management/*"

sbt-github-actions

There’s also sbt-github-actions, an sbt plugin by Daniel Spiewak that can gen-
erate the workflow files, and keep the settings in build.sbt file.

Setting up Travis CI with sbt

Travis CI is a hosted continuous integration service for open source and private
projects. Many of the OSS projects hosted on GitHub uses open source edition
of Travis CI to validate pushes and pull requests. We’ll discuss some of the best
practices setting up Travis CI.

399

https://github.com/sbt/sbt-github-actions
https://travis-ci.com/
https://travis-ci.org/
https://travis-ci.org/

Set project/build.properties

Continuous integration is a great way of checking that your code works out-
side of your machine. If you haven’t created one already, make sure to create
project/build.properties and explicitly set the sbt.version number:

sbt.version=1.9.8

Your build will now use 1.9.8.

Read the Travis manual

A treasure trove of Travis tricks can be found in the Travis’s official documen-
tation. Use this guide as an inspiration, but consult the official source for more
details.

Basic setup

Setting up your build for Travis CI is mostly about setting up .travis.yml.
Scala page says the basic file can look like:

language: scala

jdk: openjdk8

scala:
- 2.10.4
- 2.12.18

By default Travis CI executes sbt ++$TRAVIS_SCALA_VERSION test. Let’s
specify that explicitly:

language: scala

jdk: openjdk8

scala:
- 2.10.4
- 2.12.18

script:
- sbt ++$TRAVIS_SCALA_VERSION test

More info on script section can be found in Configuring your build.

As noted on the Scala page, Travis CI uses paulp/sbt-extras as the sbt command.
This becomes relevant when you want to override JVM options, which we’ll see
later.

400

http://docs.travis-ci.com/
http://docs.travis-ci.com/
http://docs.travis-ci.com/user/languages/scala/
http://docs.travis-ci.com/user/build-configuration/
http://docs.travis-ci.com/user/languages/scala/
https://github.com/paulp/sbt-extras

Plugin build setup

For sbt plugins, there is no need for cross building on Scala, so the following is
all you need:

language: scala

jdk: openjdk8

script:
- sbt scripted

Another source of good information is to read the output by Travis CI itself
to learn about how the virtual environment is set up. For example, from the
following output we learn that it is using JVM_OPTS environment variable to pass
in the JVM options.

$ export JVM_OPTS=@/etc/sbt/jvmopts
$ export SBT_OPTS=@/etc/sbt/sbtopts

Custom JVM options

The default sbt and JVM options are set by Travis CI people, and it should work
for most cases. If you do decide to customize it, read what they currently use
as the defaults first. Because Travis is already using the environment variable
JVM_OPTS, we can instead create a file travis/jvmopts:

-Dfile.encoding=UTF8
-Xms2048M
-Xmx2048M
-Xss6M
-XX:ReservedCodeCacheSize=256M

and then write out the script section with -jvm-opts option:

script:
- sbt ++$TRAVIS_SCALA_VERSION -jvm-opts travis/jvmopts test

After making the change, confirm on the Travis log to see if the flags are taking
effect:

Executing command line:
java
-Dfile.encoding=UTF8
-Xms2048M
-Xmx2048M
-Xss6M
-XX:ReservedCodeCacheSize=256M
-jar

401

https://github.com/travis-ci/travis-cookbooks/blob/master/cookbooks/travis_sbt_extras/templates/default/sbtopts.erb
https://github.com/travis-ci/travis-cookbooks/blob/master/cookbooks/travis_sbt_extras/templates/default/jvmopts.erb

/home/travis/.sbt/launchers/1.9.8/sbt-launch.jar

It seems to be working. One downside of setting all of the parameters is that
we might be left behind when the environment updates and the default values
gives us more memory in the future.

Here’s how we can add just a few JVM options:

script:
- sbt ++$TRAVIS_SCALA_VERSION -Dfile.encoding=UTF8 -J-XX:ReservedCodeCacheSize=256M -J-Xms1024M test

sbt-extra script passes any arguments starting with either -D or -J directly to
JVM.

Again, let’s check the Travis log to see if the flags are taking effect:

Executing command line:
java
-Xms2048M
-Xmx2048M
-Xss6M
-Dfile.encoding=UTF8
-XX:ReservedCodeCacheSize=256M
-Xms1024M
-jar
/home/travis/.sbt/launchers/1.9.8/sbt-launch.jar

Note: This duplicates the -Xms flag as intended, which might not the best thing
to do.

Caching

You can speed up your sbt builds on Travis CI by using their caching feature.

Here’s a sample cache: configuration that you can use:

cache:
directories:

- $HOME/.cache/coursier
- $HOME/.ivy2/cache
- $HOME/.sbt

Note: Coursier uses different cache location depending on the OS, so the above
needs to be changed accordingly for macOS or Windows images.

You’ll also need the following snippet to avoid unnecessary cache updates:

before_cache:
- rm -fv $HOME/.ivy2/.sbt.ivy.lock
- find $HOME/.ivy2/cache -name "ivydata-*.properties" -print -delete
- find $HOME/.sbt -name "*.lock" -print -delete

402

http://docs.travis-ci.com/user/caching/
https://get-coursier.io/docs/cache

With the above changes combined Travis CI will tar up the cached directories
and uploads them to a cloud storage provider. Overall, the use of caching should
shave off a few minutes of build time per job.

Build matrix

We’ve already seen the example of Scala cross building.

language: scala

jdk: openjdk8

scala:
- 2.10.4
- 2.12.18

script:
- sbt ++$TRAVIS_SCALA_VERSION test

We can also form a build matrix using environment variables:

env:
global:

- SOME_VAR="1"

This splits the build into two parts
matrix:

- TEST_COMMAND="scripted sbt-assembly/*"
- TEST_COMMAND="scripted merging/* caching/*"

script:
- sbt "$TEST_COMMAND"

Now two jobs will be created to build this sbt plugin, simultaneously running
different integration tests. This technique is described in Parallelizing your
builds across virtual machines.

Notification

You can configure Travis CI to notify you.

By default, email notifications will be sent to the committer and the
commit author, if they are members of the repository[…].

And it will by default send emails when, on the given branch:

• a build was just broken or still is broken
• a previously broken build was just fixed

403

http://docs.travis-ci.com/user/speeding-up-the-build/
http://docs.travis-ci.com/user/speeding-up-the-build/
http://docs.travis-ci.com/user/notifications/

The default behavior looks reasonable, but if you want, we can override the
notifications section to email you on successful builds too, or to use some
other channel of communication like IRC.

Email specific recipient all the time
notifications:
email:
recipients:

- one@example.com
on_success: always # default: change

This might also be a good time to read up on encryption using the command
line travis tool.

$ travis encrypt one@example.com

Dealing with flaky network or tests

For builds that are more prone to flaky network or tests, Travis CI has created
some tricks described in the page My builds is timing out.

Starting your command with travis_retry retries the command three times if
the return code is non-zero. With caching, hopefully the effect of flaky network
is reduced, but it’s an interesting one nonetheless. Here are some cautionary
words from the documentation:

We recommend careful use of travis_retry, as overusing it can
extend your build time when there could be a deeper underlying
issue.

Another tidbit about Travis is the output timeout:

Our builds have a global timeout and a timeout that’s based on the
output. If no output is received from a build for 10 minutes, it’s
assumed to have stalled for unknown reasons and is subsequently
killed.

There’s a function called travis_wait that can extend this to 20 minutes.

More things

There are more thing you can do, such as set up databases, installing Ubuntu
packages, and deploy continuously.

Travis offers the ability to run tests in parallel, and also imposes time limits on
builds. If you have an especially long-running suite of scripted tests for your
plugin, you can run a subset of scripted tests in a directory, for example:

404

http://docs.travis-ci.com/user/encryption-keys/
http://docs.travis-ci.com/user/build-timeouts/
http://docs.travis-ci.com/user/database-setup/
http://docs.travis-ci.com/user/installing-dependencies/
http://docs.travis-ci.com/user/installing-dependencies/
http://docs.travis-ci.com/user/deployment/

- TEST_COMMAND="scripted tests/*1of3"
- TEST_COMMAND="scripted tests/*2of3"
- TEST_COMMAND="scripted tests/*3of3"

Will create three chunks and run each of the chunks separately for the directory
tests.

Sample setting

Here’s a sample that puts them all together. Remember, most of the sections
are optional.

language: scala

jdk: openjdk8

env:
This splits the build into two parts
matrix:

- TEST_COMMAND="scripted sbt-assembly/*"
- TEST_COMMAND="scripted merging/* caching/*"

script:
- sbt -Dfile.encoding=UTF8 -J-XX:ReservedCodeCacheSize=256M "$TEST_COMMAND"

before_cache:
- rm -fv $HOME/.ivy2/.sbt.ivy.lock
- find $HOME/.ivy2/cache -name "ivydata-*.properties" -print -delete
- find $HOME/.sbt -name "*.lock" -print -delete

cache:
directories:

- $HOME/.cache/coursier
- $HOME/.ivy2/cache
- $HOME/.sbt

Testing sbt plugins

Let’s talk about testing. Once you write a plugin, it turns into a long-term
thing. To keep adding new features (or to keep fixing bugs), writing tests makes
sense.

405

scripted test framework

sbt comes with scripted test framework, which lets you script a build scenario.
It was written to test sbt itself on complex scenarios – such as change detection
and partial compilation:

Now, consider what happens if you were to delete B.scala but do
not update A.scala. When you recompile, you should get an error
because B no longer exists for A to reference. [… (really complicated
stuff)]

The scripted test framework is used to verify that sbt handles cases
such as that described above.

The framework is made available via scripted-plugin. The rest of this page
explains how to include the scripted-plugin into your plugin.

step 1: snapshot

Before you start, set your version to a -SNAPSHOT one because scripted-
plugin will publish your plugin locally. If you don’t use SNAPSHOT, you could
get into a horrible inconsistent state of you and the rest of the world seeing
different artifacts.

step 2: SbtPlugin

Enable SbtPlugin in build.sbt:

lazy val root = (project in file("."))
.enablePlugins(SbtPlugin)
.settings(
name := "sbt-something"

)

Then add the following settings to build.sbt:

lazy val root = (project in file("."))
.enablePlugins(SbtPlugin)
.settings(
name := "sbt-something",
scriptedLaunchOpts := { scriptedLaunchOpts.value ++
Seq("-Xmx1024M", "-Dplugin.version=" + version.value)

},
scriptedBufferLog := false

)

Note: You must use sbt 1.2.1 and above to use SbtPlugin.

406

step 3: src/sbt-test

Make dir structure src/sbt-test/<test-group>/<test-name>. For starters,
try something like src/sbt-test/<your-plugin-name>/simple.

Now ready? Create an initial build in simple. Like a real build using your
plugin. I’m sure you already have several of them to test manually. Here’s an
example build.sbt:

lazy val root = (project in file("."))
.settings(
version := "0.1",
scalaVersion := "2.10.6",
assembly / assemblyJarName := "foo.jar"

)

In project/plugins.sbt:

sys.props.get("plugin.version") match {
case Some(x) => addSbtPlugin("com.eed3si9n" % "sbt-assembly" % x)
case _ => sys.error("""|The system property 'plugin.version' is not defined.

Specify this property using the scriptedLaunchOpts -D.""".stripMargin)
}

This a trick I picked up from earldouglas/xsbt-web-plugin@feabb2, which allows
us to pass version number into the test.

I also have src/main/scala/hello.scala:

object Main {
def main(args: Array[String]): Unit = {
println("hello")

}
}

step 4: write a script

Now, write a script to describe your scenario in a file called test located at the
root dir of your test project.

check if the file gets created
> assembly
$ exists target/scala-2.10/foo.jar

Here is the syntax for the script:

1. # starts a one-line comment
2. > name sends a task to sbt (and tests if it succeeds)
3. $ name arg* performs a file command (and tests if it succeeds)
4. -> name sends a task to sbt, but expects it to fail

407

https://github.com/earldouglas/xsbt-web-plugin/commit/feabb2eb554940d9b28049bd0618b6a790d9e141

5. -$ name arg* performs a file command, but expects it to fail

File commands are:

• touch path+ creates or updates the timestamp on the files
• delete path+ deletes the files
• exists path+ checks if the files exist
• mkdir path+ creates dirs
• absent path+ checks if the files don’t exist
• newer source target checks if source is newer
• must-mirror source target checks if source is identical
• pause pauses until enter is pressed
• sleep time sleeps (in milliseconds)
• exec command args* runs the command in another process
• copy-file fromPath toPath copies the file
• copy fromPath+ toDir copies the paths to toDir preserving relative struc-

ture
• copy-flat fromPath+ toDir copies the paths to toDir flat

So my script will run assembly task, and checks if foo.jar gets created. We’ll
cover more complex tests later.

step 5: run the script

To run the scripts, go back to your plugin project, and run:

> scripted

This will copy your test build into a temporary dir, and executes the test script.
If everything works out, you’d see publishLocal running, then:

Running sbt-assembly / simple
[success] Total time: 18 s, completed Sep 17, 2011 3:00:58 AM

step 6: custom assertion

The file commands are great, but not nearly enough because none of them test
the actual contents. An easy way to test the contents is to implement a custom
task in your test build.

For my hello project, I’d like to check if the resulting jar prints out “hello”. I
can take advantage of scala.sys.process.Process to run the jar. To express
a failure, just throw an error. Here’s build.sbt:

import scala.sys.process.Process

lazy val root = (project in file("."))
.settings(

408

version := "0.1",
scalaVersion := "2.10.6",
assembly / assemblyJarName := "foo.jar",
TaskKey[Unit]("check") := {

val process = Process("java", Seq("-jar", (crossTarget.value / "foo.jar").toString))
val out = (process!!)
if (out.trim != "bye") sys.error("unexpected output: " + out)
()

}
)

I am intentionally testing if it matches “bye”, to see how the test fails.

Here’s test:

check if the file gets created
> assembly
$ exists target/foo.jar

check if it says hello
> check

Running scripted fails the test as expected:

[info] [error] {file:/private/var/folders/Ab/AbC1EFghIj4LMNOPqrStUV+++XX/-Tmp-/sbt_cdd1b3c4/simple/}default-0314bd/*:check: unexpected output: hello
[info] [error] Total time: 0 s, completed Sep 21, 2011 8:43:03 PM
[error] x sbt-assembly / simple
[error] {line 6} Command failed: check failed
[error] {file:/Users/foo/work/sbt-assembly/}default-373f46/*:scripted: sbt-assembly / simple failed
[error] Total time: 14 s, completed Sep 21, 2011 8:00:00 PM

step 7: testing the test

Until you get the hang of it, it might take a while for the test itself to behave
correctly. There are several techniques that may come in handy.

First place to start is turning off the log buffering.

> set scriptedBufferLog := false

This for example should print out the location of the temporary dir:

[info] [info] Set current project to default-c6500b (in build file:/private/var/folders/Ab/AbC1EFghIj4LMNOPqrStUV+++XX/-Tmp-/sbt_8d950687/simple/project/plugins/)
...

Add the following line to your test script to suspend the test until you hit the
enter key:

$ pause

409

If you’re thinking about going down to the sbt/sbt-test/sbt-foo/simple and
running sbt, don’t do it. The right way, is to copy the dir somewhere else and
run it.

step 8: get inspired

There are literally 100+ scripted tests under sbt project itself. Browse around
to get inspirations.

For example, here’s the one called by-name.

> compile

change => Int to Function0
$ copy-file changes/A.scala A.scala

Both A.scala and B.scala need to be recompiled because the type has changed
-> compile

xsbt-web-plugin and sbt-assembly have some scripted tests too.

That’s it! Let me know about your experience in testing plugins!

sbt new and Templates

sbt 0.13.13 adds a new command called new, to create new build definitions
from a template. The new command is extensible via a mechanism called the
template resolver.

Trying new command

First, you need sbt’s launcher version 0.13.13 or above. Normally the exact
version for the sbt launcher does not matter because it will use the version
specified by sbt.version in project/build.properties; however for new
sbt’s launcher 0.13.13 or above is required as the command functions without a
project/build.properties present.

Next, run:

$ sbt new scala/scala-seed.g8
....
name [hello]:

Template applied in ./hello

410

https://github.com/sbt/sbt/tree/develop/sbt-app/src/sbt-test
https://github.com/earldouglas/xsbt-web-plugin/tree/master/src/sbt-test
https://github.com/sbt/sbt-assembly/tree/master/src/sbt-test/sbt-assembly

This ran the template scala/scala-seed.g8 using Giter8, prompted for values
for “name” (which has a default value of “hello”, which we accepted hitting
[Enter]), and created a build under ./hello.

scala-seed is the official template for a “minimal” Scala project, but it’s defi-
nitely not the only one out there.

Giter8 support

Giter8 is a templating project originally started by Nathan Hamblen in 2010,
and now maintained by the foundweekends project. The unique aspect of Giter8
is that it uses GitHub (or any other git repository) to host the templates, so
it allows anyone to participate in template creation. Here are some of the
templates provided by official sources:

• foundweekends/giter8.g8 (A template for Giter8 templates)
• scala/scala-seed.g8 (Seed template for Scala)
• scala/scala3.g8 (A template for Scala 3 projects)
• scala/hello-world.g8 (A template to demonstrate a minimal Scala applica-

tion)
• scala/scalatest-example.g8 (A template for trying out ScalaTest)
• akka-quickstart-scala.g8 (A minimal seed template for an Akka with Scala

build)
• akka/akka-java-seed.g8 (A minimal seed template for an Akka in Java)
• playframework/play-scala-seed.g8 (Play Scala Seed Template)
• playframework/play-java-seed.g8 (Play Java Seed template)
• lagom/lagom-scala.g8 (A Lagom Scala seed template for sbt)
• lagom/lagom-java.g8 (A Lagom Java seed template for sbt)
• scala-native/scala-native.g8 (Scala Native)
• portable-scala/sbt-crossproject.g8 (sbt-crosspoject)
• http4s/http4s.g8 (http4s services)
• unfiltered/unfiltered.g8 (Unfiltered application)
• scalatra/scalatra-sbt.g8 (Basic Scalatra template using SBT 0.13.x.)

For more, see Giter8 templates on the Giter8 wiki. sbt provides out-of-the-box
support for Giter8 templates by shipping with a template resolver for Giter8.

Giter8 parameters

You can append Giter8 parameters to the end of the command, so for example
to specify a particular branch you can use:

$ sbt new scala/scala-seed.g8 --branch myBranch

How to create a Giter8 template

411

https://github.com/scala/scala-seed.g8
https://www.foundweekends.org/giter8/
https://www.foundweekends.org/giter8/
https://www.foundweekends.org/
https://github.com/foundweekends/giter8.g8
https://github.com/scala/scala-seed.g8
https://github.com/scala/scala3.g8
https://github.com/scala/hello-world.g8
https://github.com/scala/scalatest-example.g8
https://github.com/akka/akka-quickstart-scala.g8
https://github.com/akka/akka-java-seed.g8
https://github.com/playframework/play-scala-seed.g8
https://github.com/playframework/play-java-seed.g8
https://github.com/lagom/lagom-scala.g8/
https://www.lagomframework.com/
https://github.com/lagom/lagom-java.g8/
https://www.lagomframework.com/
https://github.com/scala-native/scala-native.g8
https://github.com/portable-scala/sbt-crossproject.g8
https://github.com/http4s/http4s.g8
https://github.com/unfiltered/unfiltered.g8
https://unfiltered.ws/
https://github.com/scalatra/scalatra-sbt.g8
https://github.com/foundweekends/giter8/wiki/giter8-templates

See Making your own templates for the details on how to create a new Giter8
template.

$ sbt new foundweekends/giter8.g8

Use CC0 1.0 for template licensing

We recommend licensing software templates under CC0 1.0, which waives all
copyrights and related rights, similar to the “public domain.”

If you reside in a country covered by the Berne Convention, such as the US,
copyright will arise automatically without registration. Thus, people won’t have
legal right to use your template if you do not declare the terms of license. The
tricky thing is that even permissive licenses such as MIT License and Apache
License will require attribution to your template in the template user’s software.
To remove all claims to the templated snippets, distribute it under CC0, which
is an international equivalent to public domain.

License

Written in <YEAR> by <AUTHOR NAME> <AUTHOR E-MAIL ADDRESS>
[other author/contributor lines as appropriate]
To the extent possible under law, the author(s) have dedicated all copyright and related and neighboring rights to this software to the public domain worldwide. This software is distributed without any warranty.
You should have received a copy of the CC0 Public Domain Dedication along with this software. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.

How to extend sbt new

The rest of this page explains how to extend the sbt new command to provide
support for something other than Giter8 templates. You can skip this section
if you’re not interested in extending new.

Template Resolver

A template resolver is a partial function that looks at the arguments after sbt
new and determines whether it can resolve to a particular template. This is
analogous to resolvers resolving a ModuleID from the Internet.

The Giter8TemplateResolver takes the first argument that does not start with
a hyphen (-), and checks whether it looks like a GitHub repo or a git repo that
ends in “.g8”. If it matches one of the patterns, it will pass the arguments to
Giter8 to process.

To create your own template resolver, create a library that has template-resolver
as a dependency:

val templateResolverApi = "org.scala-sbt" % "template-resolver" % "0.1"

and extend TemplateResolver, which is defined as:

412

https://www.foundweekends.org/giter8/template.html
https://creativecommons.org/publicdomain/zero/1.0/

package sbt.template;

/** A way of specifying template resolver.
*/

public interface TemplateResolver {
/** Returns true if this resolver can resolve the given argument.
*/

public boolean isDefined(String[] arguments);
/** Resolve the given argument and run the template.
*/

public void run(String[] arguments);
}

Publish the library to sbt community repo or Maven Central.

templateResolverInfos

Next, create an sbt plugin that adds a TemplateResolverInfo to
templateResolverInfos.

import Def.Setting
import Keys._

/** An experimental plugin that adds the ability for Giter8 templates to be resolved
*/

object Giter8TemplatePlugin extends AutoPlugin {
override def requires = CorePlugin
override def trigger = allRequirements

override lazy val globalSettings: Seq[Setting[_]] =
Seq(
templateResolverInfos +=
TemplateResolverInfo(ModuleID("org.scala-sbt.sbt-giter8-resolver", "sbt-giter8-resolver", "0.1.0") cross CrossVersion.binary,
"sbtgiter8resolver.Giter8TemplateResolver")

)
}

This indirecton allows template resolvers to have a classpath independent from
the rest of the build.

Cross building plugins

Like we are able to cross build against multiple Scala versions, we can cross
build sbt 0.13 plugins while staying on sbt 1.x.

crossSbtVersions := Vector("1.2.8", "0.13.18")

413

If you need to make changes specific to a sbt version, you can now include them
into src/main/scala-sbt-0.13 and src/main/scala-sbt-1.0. To switch be-
tween the sbt versions use

^^ 0.13.18

[info] Setting `sbtVersion in pluginCrossBuild` to 0.13.18
[info] Set current project to sbt-something (in build file:/xxx/sbt-something/)

or ^compile to cross compile.

Mixing libraries and sbt plugins in a build

When you want to mix both libraries and sbt plugins into a multi-project build,
it’s more convenient to drive the sbt version based on the Scala version.

You can do that as follows:

ThisBuild / crossScalaVersions := Seq("2.10.7", "2.12.10")

lazy val core = (project in file("core"))

lazy val plugin = (project in file("sbt-something"))
.enablePlugins(SbtPlugin)
.dependsOn(core)
.settings(
// change the sbt version based on Scala version
pluginCrossBuild / sbtVersion := {
scalaBinaryVersion.value match {

case "2.10" => "0.13.18"
case "2.12" => "1.2.8"

}
}

)

This is a technique discovered by [@jroper](https://github.com/jroper) in sbt-
pgp#115. It works because sbt 0.13 and 1.x series use different Scala binary
versions.

Using the setting, you can now use Scala cross building commands such as
+compile and +publish.

How to…

See Detailed Table of Contents for the list of all the how-tos.

414

https://github.com/sbt/sbt-pgp/pull/115
https://github.com/sbt/sbt-pgp/pull/115
Contents+in+Depth.html

Classpaths

Include a new type of managed artifact on the classpath, such as mar

The classpathTypes setting controls the types of managed artifacts that are
included on the classpath by default. To add a new type, such as mar,

classpathTypes += "mar"

Get the classpath used for compilation

See the default types included by running show classpathTypes at the sbt
prompt.

The dependencyClasspath task scoped to Compile provides the classpath to use
for compilation. Its type is Seq[Attributed[File]], which means that each
entry carries additional metadata. The files method provides just the raw
Seq[File] for the classpath. For example, to use the files for the compilation
classpath in another task, :

example := {
val cp: Seq[File] = (Compile / dependencyClasspath).value.files
...

}

Note: This classpath does not include the class directory, which
may be necessary for compilation in some situations.

Get the runtime classpath, including the project’s compiled classes

The fullClasspath task provides a classpath including both the dependencies
and the products of project. For the runtime classpath, this means the main
resources and compiled classes for the project as well as all runtime dependen-
cies.

The type of a classpath is Seq[Attributed[File]], which means that each
entry carries additional metadata. The files method provides just the raw
Seq[File] for the classpath. For example, to use the files for the runtime
classpath in another task, :

example := {
val cp: Seq[File] = (fullClasspath in Runtime).value.files
...

}

415

Get the test classpath, including the project’s compiled test classes

The fullClasspath task provides a classpath including both the dependencies
and the products of a project. For the test classpath, this includes the main and
test resources and compiled classes for the project as well as all dependencies
for testing.

The type of a classpath is Seq[Attributed[File]], which means that each
entry carries additional metadata. The files method provides just the raw
Seq[File] for the classpath. For example, to use the files for the test classpath
in another task, :

example := {
val cp: Seq[File] = (Test / fullClasspath).value.files
...

}

Use packaged jars on classpaths instead of class directories

By default, fullClasspath includes a directory containing class files and re-
sources for a project. This in turn means that tasks like compile, test, and
run have these class directories on their classpath. To use the packaged artifact
(such as a jar) instead, configure exportJars :

exportJars := true

This will use the result of packageBin on the classpath instead of the class
directory.

Note: Specifically, fullClasspath is the concatenation of dependen-
cyClasspath and exportedProducts. When exportJars is true, ex-
portedProducts is the output of packageBin. When exportJars is
false, exportedProducts is just products, which is by default the
directory containing class files and resources.

Get all managed jars for a configuration

The result of the update task has type UpdateReport, which contains the results
of dependency resolution. This can be used to extract the files for specific types
of artifacts in a specific configuration. For example, to get the jars and zips of
dependencies in the Compile configuration, :

example := {
val artifactTypes = Set("jar", "zip")
val files =

Classpaths.managedJars(Compile, artifactTypes, update.value)

416

Update-Report.html

...
}

Get the files included in a classpath

A classpath has type Seq[Attributed[File]], which means that each entry car-
ries additional metadata. The files method provides just the raw Seq[File]
for the classpath. For example, :

val cp: Seq[Attributed[File]] = ...
val files: Seq[File] = cp.files

Get the module and artifact that produced a classpath entry

A classpath has type Seq[Attributed[File]], which means that each entry car-
ries additional metadata. This metadata is in the form of an AttributeMap. Use-
ful keys for entries in the map are artifact.key, moduleID.key, and analysis.
For example,

val classpath: Seq[Attributed[File]] = ???
for(entry <- classpath) yield {

val art: Option[Artifact] = entry.get(artifact.key)
val mod: Option[ModuleID] = entry.get(moduleID.key)
val an: Option[inc.Analysis] = entry.get(analysis)
...

}

Note: Entries may not have some or all metadata. Only entries from
source dependencies, such as internal projects, have an incremental
compilation Analysis. Only entries for managed dependencies have
an Artifact and ModuleID.

Customizing paths

This page describes how to modify the default source, resource, and library
directories and what files get included from them.

Change the default Scala source directory

The directory that contains the main Scala sources is by default src/main/scala.
For test Scala sources, it is src/test/scala. To change this, modify
scalaSource in the Compile (for main sources) or Test (for test sources). For
example,

417

../api/sbt/internal/util/AttributeMap.html
../api/sbt/internal/inc/Analysis.html
../api/sbt/librarymanagement/Artifact.html
../api/sbt/librarymanagement/ModuleID.html

Compile / scalaSource := baseDirectory.value / "src"

Test / scalaSource := baseDirectory.value / "test-src"

Note: The Scala source directory can be the same as the Java source
directory.

Change the default Java source directory

The directory that contains the main Java sources is by default src/main/java.
For test Java sources, it is src/test/java. To change this, modify javaSource
in the Compile (for main sources) or Test (for test sources).

For example,

Compile / javaSource := baseDirectory.value / "src"

Test / javaSource := baseDirectory.value / "test-src"

Note: The Scala source directory can be the same as the Java source
directory.

Change the default resource directory

The directory that contains the main resources is by default src/main/resources.
For test resources, it is src/test/resources. To change this, modify
resourceDirectory in either the Compile or Test configuration.

For example,

Compile / resourceDirectory := baseDirectory.value / "resources"

Test / resourceDirectory := baseDirectory.value / "test-resources"

Change the default (unmanaged) library directory

The directory that contains the unmanaged libraries is by default lib/. To
change this, modify unmanagedBase. This setting can be changed at the project
level or in the Compile, Runtime, or Test configurations.

When defined without a configuration, the directory is the default directory
for all configurations. For example, the following declares jars/ as containing
libraries:

unmanagedBase := baseDirectory.value / "jars"

418

When set for Compile, Runtime, or Test, unmanagedBase is the directory con-
taining libraries for that configuration, overriding the default. For example,
the following declares lib/main/ to contain jars only for Compile and not for
running or testing:

Compile / unmanagedBase := baseDirectory.value / "lib" / "main"

Disable using the project’s base directory as a source directory

By default, sbt includes .scala files from the project’s base directory as main
source files. To disable this, configure sourcesInBase:

sourcesInBase := false

Add an additional source directory

sbt collects sources from unmanagedSourceDirectories, which by de-
fault consists of scalaSource and javaSource. Add a directory to
unmanagedSourceDirectories in the appropriate configuration to add a
source directory. For example, to add extra-src to be an additional directory
containing main sources,

Compile / unmanagedSourceDirectories += baseDirectory.value / "extra-src"

Note: This directory should only contain unmanaged sources, which
are sources that are manually created and managed. See Generating
Files for working with automatically generated sources.

Add an additional resource directory

sbt collects resources from unmanagedResourceDirectories, which by default
consists of resourceDirectory. Add a directory to unmanagedResourceDirectories
in the appropriate configuration to add another resource directory. For exam-
ple, to add extra-resources to be an additional directory containing main
resources,

Compile / unmanagedResourceDirectories += baseDirectory.value / "extra-resources"

Note: This directory should only contain unmanaged resources,
which are resources that are manually created and managed. See
Generating Files for working with automatically generated resources.

Include/exclude files in the source directory

When sbt traverses unmanagedSourceDirectories for sources, it only
includes directories and files that match includeFilter and do not

419

Howto-Generating-Files.html
Howto-Generating-Files.html
Howto-Generating-Files.html

match excludeFilter. includeFilter and excludeFilter have type
java.io.FileFilter and sbt provides some useful combinators for construct-
ing a FileFilter. For example, in addition to the default hidden files exclusion,
the following also ignores files containing impl in their name,

unmanagedSources / excludeFilter := HiddenFileFilter || "*impl*"

To have different filters for main and test libraries, configure Compile and Test
separately:

Compile / unmanagedSources / includeFilter := "*.scala" || "*.java"
Test / unmanagedSources / includeFilter := HiddenFileFilter || "*impl*"

Note: By default, sbt includes .scala and .java sources, excluding
hidden files.

Include/exclude files in the resource directory

When sbt traverses unmanagedResourceDirectories for resources, it
only includes directories and files that match includeFilter and do not
match excludeFilter. includeFilter and excludeFilter have type
java.io.FileFilter and sbt provides some useful combinators for construct-
ing a FileFilter. For example, in addition to the default hidden files exclusion,
the following also ignores files containing impl in their name,

unmanagedResources / excludeFilter := HiddenFileFilter || "*impl*"

To have different filters for main and test libraries, configure Compile and Test
separately:

Compile / unmanagedResources / includeFilter := "*.txt"
Test / unmanagedResources / includeFilter := "*.html"

Note: By default, sbt includes all files that are not hidden.

Include only certain (unmanaged) libraries

When sbt traverses unmanagedBase for resources, it only includes directories
and files that match includeFilter and do not match excludeFilter.
includeFilter and excludeFilter have type java.io.FileFilter and sbt
provides some useful combinators for constructing a FileFilter. For example,
in addition to the default hidden files exclusion, the following also ignores zips,

unmanagedJars / excludeFilter := HiddenFileFilter || "*.zip"

To have different filters for main and test libraries, configure Compile and Test
separately:

Compile / unmanagedJars / includeFilter := "*.jar"
Test / unmanagedJars / includeFilter := "*.jar" || "*.zip"

420

Paths.html#file-filter
Paths.html#file-filter
Paths.html#file-filter

Note: By default, sbt includes jars, zips, and native dynamic li-
braries, excluding hidden files.

Generating files

sbt provides standard hooks for adding source and resource generation tasks.

Generate sources

A source generation task should generate sources in a subdirectory of
sourceManaged and return a sequence of files generated. The signature of
a source generation function (that becomes a basis for a task) is usually as
follows:

def makeSomeSources(base: File): Seq[File]

The key to add the task to is called sourceGenerators. Because we want to
add the task, and not the value after its execution, we use taskValue instead of
the usual value. sourceGenerators should be scoped according to whether the
generated files are main (Compile) or test (Test) sources. This basic structure
looks like:

Compile / sourceGenerators += <task of type Seq[File]>.taskValue

For example, assuming a method def makeSomeSources(base: File):
Seq[File],

Compile / sourceGenerators += Def.task {
makeSomeSources((Compile / sourceManaged).value / "demo")

}.taskValue

As a specific example, the following source generator generates Test.scala
application object that once executed, prints "Hi" to the console:

Compile / sourceGenerators += Def.task {
val file = (Compile / sourceManaged).value / "demo" / "Test.scala"
IO.write(file, """object Test extends App { println("Hi") }""")
Seq(file)

}.taskValue

Executing run will print "Hi".

> run
[info] Running Test
Hi

Change Compile to Test to make it a test source.

NOTE: For the efficiency of the build, sourceGenerators should avoid regen-
erating source files upon each call. Instead, the outputs should be cached based

421

on the input values either using the File tracking system or by manually track-
ing the input values using sbt.Tracked.{ inputChanged, outputChanged }
etc.

By default, generated sources are not included in the packaged source artifact.
To do so, add them as you would other mappings. See Adding files to a package.
A source generator can return both Java and Scala sources mixed together in
the same sequence. They will be distinguished by their extension later.

Generate resources

A resource generation task should generate resources in a subdirectory of
resourceManaged and return a sequence of files generated. Like a source
generation function, the signature of a resource generation function (that
becomes a basis for a task) is usually as follows:

def makeSomeResources(base: File): Seq[File]

The key to add the task to is called resourceGenerators. Because we want to
add the task, and not the value after its execution, we use taskValue instead of
the usual value. It should be scoped according to whether the generated files
are main (Compile) or test (Test) resources. This basic structure looks like:

Compile / resourceGenerators += <task of type Seq[File]>.taskValue

For example, assuming a method def makeSomeResources(base: File):
Seq[File],

Compile / resourceGenerators += Def.task {
makeSomeResources((Compile / resourceManaged).value / "demo")

}.taskValue

Executing run (or package, not compile) will add a file demo to resourceManaged,
which is target/scala-*/resource_managed". By default, generated re-
sources are not included in the packaged source artifact. To do so, add them
as you would other mappings. See Adding files to a package.

As a specific example, the following generates a properties file myapp.properties
containing the application name and version:

Compile / resourceGenerators += Def.task {
val file = (Compile / resourceManaged).value / "demo" / "myapp.properties"
val contents = "name=%s\nversion=%s".format(name.value,version.value)
IO.write(file, contents)
Seq(file)

}.taskValue

Change Compile to Test to make it a test resource.

422

Howto-Track-File-Inputs-and-Outputs.html
Howto-Package.html#modify-package-contents
Howto-Package.html#modify-package-contents

NOTE: For the efficiency of the build, resourceGenerators should avoid re-
generating resource files upon each call, and cache based on the input values
using sbt.Tracked.{ inputChanged, outputChanged } etc instead.

Inspect the build

Show or search help for a command, task, or setting

The help command is used to show available commands and search the help for
commands, tasks, or settings. If run without arguments, help lists the available
commands.

> help

help Displays this help message or prints detailed help on
requested commands (run 'help <command>').

about Displays basic information about sbt and the build.
reload (Re)loads the project in the current directory
...

> help compile

If the argument passed to help is the name of an existing command, setting or
task, the help for that entity is displayed. Otherwise, the argument is interpreted
as a regular expression that is used to search the help of all commands, settings
and tasks.

The tasks command is like help, but operates only on tasks. Similarly, the
settings command only operates on settings.

See also help help, help tasks, and help settings.

List available tasks

The tasks command, without arguments, lists the most commonly used tasks.
It can take a regular expression to search task names and descriptions. The
verbosity can be increased to show or search less commonly used tasks. See
help tasks for details.

The settings command, without arguments, lists the most commonly used set-
tings. It can take a regular expression to search setting names and descriptions.
The verbosity can be increased to show or search less commonly used settings.
See help settings for details.

423

List available settings

The inspect command displays several pieces of information about a given
setting or task, including the dependencies of a task/setting as well as the
tasks/settings that depend on the it. For example,

> inspect Test/compile
...
[info] Dependencies:
[info] Test / manipulateBytecode
[info] Test / enableBinaryCompileAnalysis
[info] Test / compileIncSetup
[info] Reverse dependencies:
[info] Test / products
[info] Test / discoveredMainClasses
[info] Test / printWarnings
[info] Test / definedTestNames
[info] Test / definedTests
...

See the Inspecting Settings page for details.

Display tree of setting/task dependencies

In addition to displaying immediate forward and reverse dependencies as de-
scribed in the previous section, the inspect command can display the full de-
pendency tree for a task or setting. For example,

> inspect tree clean
[info] clean = Task[Unit]
[info] +-clean / streams = Task[sbt.std.TaskStreams[sbt.internal.util.Init$ScopedKey[_ <: Any]]]
[info] | +-Global / streamsManager = Task[sbt.std.Streams[sbt.internal.util.Init$ScopedKey[_ <: Any]]]
[info] |
[info] +-cleanFiles = Task[scala.collection.Seq[java.io.File]]
[info] | +-cleanKeepFiles = Vector(<project>/target/.history)
[info] | | +-history = Some(<project>/target/.history)
[info] | | +-target = target
[info] | | +-baseDirectory =
...

For each task, inspect tree show the type of the value generated by the task.
For a setting, the toString of the setting is displayed. See the Inspecting
Settings page for details on the inspect command.

Display the description and type of a setting or task

While the help, settings, and tasks commands display a description of a task,
the inspect command also shows the type of a setting or task and the value of

424

Inspecting-Settings.html
Inspecting-Settings.html
Inspecting-Settings.html

a setting. For example:

> inspect update
[info] Task: sbt.librarymanagement.UpdateReport
[info] Description:
[info] Resolves and optionally retrieves dependencies, producing a report.
...

> inspect scalaVersion
[info] Setting: java.lang.String = 2.12.6
[info] Description:
[info] The version of Scala used for building.
...

See the Inspecting Settings page for details.

Display the delegation chain of a setting or task

See the Inspecting Settings page for details.

Display related settings or tasks

The inspect command can help find scopes where a setting or task is defined.
The following example shows that different options may be specified to the Scala
for testing and API documentation generation.

> inspect scalacOptions
...
[info] Related:
[info] Compile / scalacOptions
[info] Global / scalacOptions
[info] Test / scalacOptions

See the Inspecting Settings page for details.

Show the list of projects and builds

The projects command displays the currently loaded projects. The projects
are grouped by their enclosing build and the current project is indicated by an
asterisk. For example,

> projects
[info] In file:/home/user/demo/
[info] * parent
[info] sub
[info] In file:/home/user/dep/
[info] sample

425

Inspecting-Settings.html
Inspecting-Settings.html
Inspecting-Settings.html

Show the current session (temporary) settings

session list displays the settings that have been added at the command line
for the current project. For example,

> session list
1. maxErrors := 5
2. scalacOptions += "-explaintypes"

session list-all displays the settings added for all projects. For details, see
help session.

Show basic information about sbt and the current build

> about
[info] This is sbt 1.1.5
[info] The current project is {file:~/code/sbt.github.com/}default
[info] The current project is built against Scala 2.12.6
[info] Available Plugins: sbt.plugins.IvyPlugin, sbt.plugins.JvmPlugin, sbt.plugins.CorePlugin, sbt.plugins.JUnitXmlReportPlugin, sbt.plugins.Giter8TemplatePlugin
[info] sbt, sbt plugins, and build definitions are using Scala 2.12.6

Show the value of a setting

The inspect command shows the value of a setting as part of its output, but
the show command is dedicated to this job. It shows the output of the setting
provided as an argument. For example,

> show organization
[info] com.github.sbt

The show command also works for tasks, described next.

Show the result of executing a task

> show update
... <output of update> ...
[info] Update report:
[info] Resolve time: 122 ms, Download time: 5 ms, Download size: 0 bytes
[info] compile:
[info] org.scala-lang:scala-library:
[info] - 2.12.6
[info] ...

The show command will execute the task provided as an argument and then
print the result. Note that this is different from the behavior of the inspect

426

command (described in other sections), which does not execute a task and thus
can only display its type and not its generated value.

> show compile:dependencyClasspath
...
[info] ArrayBuffer(Attributed(/Users/foo/.sbt/boot/scala-2.12.6/lib/scala-library.jar))

Show the classpath used for compilation or testing

For the test classpath,

> show Test/dependencyClasspath
...
[info] List(Attributed(/Users/foo/code/sbt.github.com/target/scala-2.12/classes), Attributed(~/.sbt/boot/scala-2.12.6/lib/scala-library.jar), Attributed(/Users/foo/.ivy2/cache/junit/junit/jars/junit-4.8.2.jar))
...

Show the main classes detected in a project

sbt detects the classes with public, static main methods for use by the run
method and to tab-complete the runMain method. The discoveredMainClasses
task does this discovery and provides as its result the list of class names. For
example, the following shows the main classes discovered in the main sources:

> show compile:discoveredMainClasses
... <runs compile if out of date> ...
[info] List(org.example.Main)

Show the test classes detected in a project

sbt detects tests according to fingerprints provided by test frameworks. The
definedTestNames task provides as its result the list of test names detected in
this way. For example,

> show Test/definedTestNames
... < runs test:compile if out of date > ...
[info] List(org.example.TestA, org.example.TestB)

Interactive mode

Use tab completion

By default, sbt’s interactive mode is started when no commands are provided
on the command line or when the shell command is invoked.

427

As the name suggests, tab completion is invoked by hitting the tab key. Sugges-
tions are provided that can complete the text entered to the left of the current
cursor position. Any part of the suggestion that is unambiguous is automatically
appended to the current text. Commands typically support tab completion for
most of their syntax.

As an example, entering tes and hitting tab:

> tes<TAB>

results in sbt appending a t:

> test

To get further completions, hit tab again:

> test<TAB>
testFrameworks testListeners testLoader testOnly testOptions test:

Now, there is more than one possibility for the next character, so sbt prints the
available options. We will select testOnly and get more suggestions by entering
the rest of the command and hitting tab twice:

> testOnly<TAB><TAB>
-- sbt.DagSpecification sbt.EmptyRelationTest sbt.KeyTest sbt.RelationTest sbt.SettingsTest

The first tab inserts an unambiguous space and the second suggests names of
tests to run. The suggestion of -- is for the separator between test names and
options provided to the test framework. The other suggestions are names of
test classes for one of sbt’s modules. Test name suggestions require tests to be
compiled first. If tests have been added, renamed, or removed since the last
test compilation, the completions will be out of date until another successful
compile.

Show more tab completion suggestions

Some commands have different levels of completion. Hitting tab multiple times
increases the verbosity of completions. (Presently, this feature is only used by
the set command.)

Modify the default JLine keybindings

JLine, used by both Scala and sbt, uses a configuration file for many of its
keybindings. The location of this file can be changed with the system property
jline.keybindings. The default keybindings file is included in the sbt launcher
and may be used as a starting point for customization.

428

Configure the prompt string

By default, sbt only displays > to prompt for a command. This can be changed
through the shellPrompt setting, which has type State => String. State
contains all state for sbt and thus provides access to all build information for
use in the prompt string.

Examples:

// set the prompt (for this build) to include the project id.
ThisBuild / shellPrompt := { state => Project.extract(state).currentRef.project + "> " }

// set the prompt (for the current project) to include the username
shellPrompt := { state => System.getProperty("user.name") + "> " }

Use history

See sbt shell history.

Change the location of the interactive history file

By default, interactive history is stored in the target/ directory for the current
project (but is not removed by a clean). History is thus separate for each
subproject. The location can be changed with the historyPath setting, which
has type Option[File]. For example, history can be stored in the root directory
for the project instead of the output directory:

historyPath := Some(baseDirectory.value / ".history")

The history path needs to be set for each project, since sbt will use the value of
historyPath for the current project (as selected by the project command).

Use the same history for all projects

The previous section describes how to configure the location of the history file.
This setting can be used to share the interactive history among all projects in a
build instead of using a different history for each project. The way this is done
is to set historyPath to be the same file, such as a file in the root project’s
target/ directory:

historyPath :=
Some((target in LocalRootProject).value / ".history")

The in LocalRootProject part means to get the output directory for the root
project for the build.

429

Build-State.html
Running.html#history

Disable interactive history

If, for whatever reason, you want to disable history, set historyPath to None
in each project it should be disabled in:

> historyPath := None

Run commands before entering interactive mode

Interactive mode is implemented by the shell command. By default, the shell
command is run if no commands are provided to sbt on the command line. To
run commands before entering interactive mode, specify them on the command
line followed by shell. For example,

$ sbt clean compile shell

This runs clean and then compile before entering the interactive prompt. If
either clean or compile fails, sbt will exit without going to the prompt. To enter
the prompt whether or not these initial commands succeed, prepend "onFailure
shell", which means to run shell if any command fails. For example,

$ sbt "onFailure shell" clean compile shell

Configure and use logging

View the logging output of the previously executed command

When a command is run, more detailed logging output is sent to a file than
to the screen (by default). This output can be recalled for the command just
executed by running last.

For example, the output of run when the sources are up to date is:

> run
[info] Running A
Hi!
[success] Total time: 0 s, completed Feb 25, 2012 1:00:00 PM

The details of this execution can be recalled by running last:

> last
[debug] Running task... Cancelable: false, max worker threads: 4, check cycles: false
[debug]
[debug] Initial source changes:
[debug] removed:Set()
[debug] added: Set()
[debug] modified: Set()
[debug] Removed products: Set()

430

[debug] Modified external sources: Set()
[debug] Modified binary dependencies: Set()
[debug] Initial directly invalidated sources: Set()
[debug]
[debug] Sources indirectly invalidated by:
[debug] product: Set()
[debug] binary dep: Set()
[debug] external source: Set()
[debug] Initially invalidated: Set()
[debug] Copy resource mappings:
[debug]
[info] Running A
[debug] Starting sandboxed run...
[debug] Waiting for threads to exit or System.exit to be called.
[debug] Classpath:
[debug] /tmp/e/target/scala-2.9.2/classes
[debug] /tmp/e/.sbt/0.12.0/boot/scala-2.9.2/lib/scala-library.jar
[debug] Waiting for thread runMain to exit
[debug] Thread runMain exited.
[debug] Interrupting remaining threads (should be all daemons).
[debug] Sandboxed run complete..
[debug] Exited with code 0
[success] Total time: 0 s, completed Jan 1, 2012 1:00:00 PM

Configuration of the logging level for the console and for the backing file are
described in following sections.

View the previous logging output of a specific task

When a task is run, more detailed logging output is sent to a file than to the
screen (by default). This output can be recalled for a specific task by running
last <task>. For example, the first time compile is run, output might look
like:

> compile
[info] Updating {file:/.../demo/}example...
[info] Resolving org.scala-lang#scala-library;2.9.2 ...
[info] Done updating.
[info] Compiling 1 Scala source to .../demo/target/scala-2.9.2/classes...
[success] Total time: 0 s, completed Jun 1, 2012 1:11:11 PM

The output indicates that both dependency resolution and compilation were
performed. The detailed output of each of these may be recalled individually.
For example,

> last compile
[debug]

431

[debug] Initial source changes:
[debug] removed:Set()
[debug] added: Set(/home/mark/tmp/a/b/A.scala)
[debug] modified: Set()
...

and:

> last update
[info] Updating {file:/.../demo/}example...
[debug] post 1.3 ivy file: using exact as default matcher
[debug] :: resolving dependencies :: example#example_2.9.2;0.1-SNAPSHOT
[debug] confs: [compile, runtime, test, provided, optional, compile-internal, runtime-internal, test-internal, plugin, sources, docs, pom]
[debug] validate = true
[debug] refresh = false
[debug] resolving dependencies for configuration 'compile'
...

Show warnings from the previous compilation

The Scala compiler does not print the full details of warnings by default. Com-
piling code that uses the deprecated error method from Predef might generate
the following output:

> compile
[info] Compiling 1 Scala source to <...>/classes...
[warn] there were 1 deprecation warnings; re-run with -deprecation for details
[warn] one warning found

The details aren’t provided, so it is necessary to add -deprecation to the
options passed to the compiler (scalacOptions) and recompile. An alternative
when using Scala 2.10 and later is to run printWarnings. This task will display
all warnings from the previous compilation. For example,

> printWarnings
[warn] A.scala:2: method error in object Predef is deprecated: Use sys.error(message) instead
[warn] def x = error("Failed.")
[warn] ^

Change the logging level globally

The quickest way to change logging levels is by using the error, warn, info, or
debug commands. These set the default logging level for commands and tasks.
For example,

> warn

432

will by default show only warnings and errors. To set the logging level before
any commands are executed on startup, use -- before the logging level. For
example,

$ sbt --warn
> compile
[warn] there were 2 feature warning(s); re-run with -feature for details
[warn] one warning found
[success] Total time: 4 s, completed ...
>

The logging level can be overridden at a finer granularity, which is described
next.

Change the logging level for a specific task, configuration, or project

The amount of logging is controlled by the logLevel setting, which takes values
from the Level enumeration. Valid values are Error, Warn, Info, and Debug
in order of increasing verbosity. The logging level may be configured globally,
as described in the previous section, or it may be applied to a specific project,
configuration, or task. For example, to change the logging level for compilation
to only show warnings and errors:

> set Compile / compile / logLevel := Level.Warn

To enable debug logging for all tasks in the current project,

> set logLevel := Level.Warn

A common scenario is that after running a task, you notice that you need
more information than was shown by default. A logLevel based solution typ-
ically requires changing the logging level and running a task again. However,
there are two cases where this is unnecessary. First, warnings from a previous
compilation may be displayed using printWarnings for the main sources or
Test/printWarnings for test sources. Second, output from the previous execu-
tion is available either for a single task or for in its entirety. See the section on
printWarnings and the sections on previous output.

Configure printing of stack traces

By default, sbt hides the stack trace of most exceptions thrown during execution.
It prints a message that indicates how to display the exception. However, you
may want to show more of stack traces by default.

The setting to configure is traceLevel, which is a setting with an Int value.
When traceLevel is set to a negative value, no stack traces are shown. When
it is zero, the stack trace is displayed up to the first sbt stack frame. When
positive, the stack trace is shown up to that many stack frames.

433

For example, the following configures sbt to show stack traces up to the first
sbt frame:

> set every traceLevel := 0

The every part means to override the setting in all scopes. To change the trace
printing behavior for a single project, configuration, or task, scope traceLevel
appropriately:

> set Test / traceLevel := 5
> set update / traceLevel := 0
> set ThisProject / traceLevel := -1

Print the output of tests immediately instead of buffering

By default, sbt buffers the logging output of a test until the whole class finishes.
This is so that output does not get mixed up when executing in parallel. To
disable buffering, set the logBuffered setting to false:

logBuffered := false

Add a custom logger

The setting extraLoggers can be used to add custom loggers. Internally,
sbt makes use of the log4j2 library, so a custom logger should imple-
ment org.apache.logging.log4j.core.Appender, usually by extending
AbstractAppender.

extraLoggers is a function ScopedKey[_] => Seq[Appender]. This means
that it can provide different logging based on the task that requests the logger.

extraLoggers := {
val currentFunction = extraLoggers.value
(key: ScopedKey[_]) => {

myCustomLogger(key) +: currentFunction(key)
}

}

Here, we take the current function currentFunction for the setting and provide
a new function. The new function prepends our custom logger to the ones
provided by the old function.

An Appender in log4j2 appends a LogEvent, whose core internally is a Message.
There can be many types of Message, but sbt generates events containing in-
stances of ObjectMessage, containing a payload that can be retrieved by calling
getParameter().

The payload emitted by sbt logging is an instance of StringEvent, which con-
tains String fields including message and level.

434

https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/log4j-core/apidocs/org/apache/logging/log4j/core/Appender.html
https://logging.apache.org/log4j/2.x/log4j-core/apidocs/org/apache/logging/log4j/core/appender/AbstractAppender.html
https://logging.apache.org/log4j/2.x/log4j-core/apidocs/org/apache/logging/log4j/core/LogEvent.html
https://logging.apache.org/log4j/2.x/log4j-api/apidocs/org/apache/logging/log4j/message/Message.html
https://logging.apache.org/log4j/2.x/log4j-api/apidocs/org/apache/logging/log4j/message/ObjectMessage.html
https://logging.apache.org/log4j/2.x/log4j-api/apidocs/org/apache/logging/log4j/message/ObjectMessage.html#getParameter--
https://github.com/sbt/util/blob/develop/internal/util-logging/src/main/contraband-scala/sbt/internal/util/StringEvent.scala

Putting all that together, here’s a (completely useless!) example of an extra
logger that logs messages from tasks in reverse to the console:

extraLoggers := {
import org.apache.logging.log4j.core.LogEvent;
import org.apache.logging.log4j.core.appender.AbstractAppender
import org.apache.logging.log4j.message.{Message,ObjectMessage}

import sbt.internal.util.StringEvent

def loggerNameForKey(key : sbt.Def.ScopedKey[_]) = s"""reverse.${key.scope.task.toOption.getOrElse("<unknown>")}"""

class ReverseConsoleAppender(key : ScopedKey[_]) extends AbstractAppender (
loggerNameForKey(key), // name : String
null, // filter : org.apache.logging.log4j.core.Filter
null, // layout : org.apache.logging.log4j.core.Layout[_ <: Serializable]
false // ignoreExceptions : Boolean

) {

this.start() // the log4j2 Appender must be started, or it will fail with an Exception

override def append(event : LogEvent) : Unit = {
val output = {

def forUnexpected(message : Message) = s"[${this.getName()}] Unexpected: ${message.getFormattedMessage()}"
event.getMessage() match {

case om : ObjectMessage => { // what we expect
om.getParameter() match {

case se : StringEvent => s"[${this.getName()} - ${se.level}] ${se.message.reverse}"
case other => forUnexpected(om)

}
}
case unexpected : Message => forUnexpected(unexpected)

}
}
System.out.synchronized { // sbt adopts a convention of acquiring System.out's monitor printing to the console

println(output)
}

}
}

val currentFunction = extraLoggers.value
(key: ScopedKey[_]) => {

new ReverseConsoleAppender(key) +: currentFunction(key)
}

}

Now, if we execute a task that logs messages, we should see our logger invoked:

435

sbt:sbt-logging-example> update
[info] Updating ...
[reverse.update - info] ... gnitadpU
[info] Done updating.
[reverse.update - info] .gnitadpu enoD
[success] Total time: 0 s, completed Oct 16, 2019 5:22:22 AM

Log messages in a task

The special task streams provides per-task logging and I/O via a Streams in-
stance. To log, a task uses the log member from the streams task. Calling log
provides a Logger:

import sbt.Keys.streams

myTask := {
val log = streams.value.log
log.warn("A warning.")

}

Log messages in a setting

Since settings cannot reference tasks, the special task streams cannot be used
to provide logging during setting initialization. The recommended way is to use
sLog. Calling sLog.value provides a Logger.

mySetting := {
val log = sLog.value
log.warn("A warning.")

}

Project metadata

Set the project name

A project should define name and version. These will be used in various parts of
the build, such as the names of generated artifacts. Projects that are published
to a repository should also override organization.

name := "Your project name"

For published projects, this name is normalized to be suitable for use as
an artifact name and dependency ID. This normalized name is stored in
normalizedName.

436

../api/sbt/std/Streams.html
../api/sbt/util/Logger.html
../api/sbt/util/Logger.html

Set the project version

version := "1.0"

Set the project organization

organization := "org.example"

By convention, this is a reverse domain name that you own, typically one specific
to your project. It is used as a namespace for projects.

A full/formal name can be defined in the organizationName setting. This is
used in the generated pom.xml. If the organization has a web site, it may be
set in the organizationHomepage setting. For example:

organizationName := "Example, Inc."

organizationHomepage := Some(url("http://example.org"))

Set the project’s homepage and other metadata

homepage := Some(url("https://www.scala-sbt.org"))

startYear := Some(2008)

description := "A build tool for Scala."

licenses += "GPLv2" -> url("https://www.gnu.org/licenses/gpl-2.0.html")

Configure packaging

Use the packaged jar on classpaths instead of class directory

By default, a project exports a directory containing its resources and compiled
class files. Set exportJars to true to export the packaged jar instead. For
example,

exportJars := true

The jar will be used by run, test, console, and other tasks that use the full
classpath.

437

Add manifest attributes

By default, sbt constructs a manifest for the binary package from settings such
as organization and mainClass. Additional attributes may be added to the
packageOptions setting scoped by the configuration and package task.

Main attributes may be added with Package.ManifestAttributes. There are
two variants of this method, once that accepts repeated arguments that map
an attribute of type java.util.jar.Attributes.Name to a String value and
other that maps attribute names (type String) to the String value.

For example,

Compile / packageBin / packageOptions +=
Package.ManifestAttributes(java.util.jar.Attributes.Name.SEALED -> "true")

Other attributes may be added with Package.JarManifest.

Compile / packageBin / packageOptions += {
import java.util.jar.{Attributes, Manifest}
val manifest = new Manifest
manifest.getAttributes("foo/bar/").put(Attributes.Name.SEALED, "false")
Package.JarManifest(manifest)

}

Or, to read the manifest from a file:

Compile / packageBin / packageOptions += {
val file = new java.io.File("META-INF/MANIFEST.MF")
val manifest = Using.fileInputStream(file)(in => new java.util.jar.Manifest(in))
Package.JarManifest(manifest)

}

Change the file name of a package

The artifactName setting controls the name of generated packages. See the
Artifacts page for details.

Modify the contents of the package

The contents of a package are defined by the mappings task, of type
Seq[(File,String)]. The mappings task is a sequence of mappings from a
file to include in the package to the path in the package. See Mapping Files for
convenience functions for generating these mappings. For example, to add the
file in/example.txt to the main binary jar with the path “out/example.txt”,

438

Artifacts.html
Mapping-Files.html

Compile / packageBin / mappings += {
(baseDirectory.value / "in" / "example.txt") -> "out/example.txt"

}

Note that mappings is scoped by the configuration and the specific package task.
For example, the mappings for the test source package are defined by the Test
/ packageSrc / mappings task.

Running commands

Pass arguments to a command or task in batch mode

sbt interprets each command line argument provided to it as a command to-
gether with the command’s arguments. Therefore, to run a command that
takes arguments in batch mode, quote the command using double quotes, and
its arguments. For example,

$ sbt "project X" clean "~ compile"

Provide multiple commands to run consecutively

Multiple commands can be scheduled at once by prefixing each command with
a semicolon. This is useful for specifying multiple commands where a single
command string is accepted. For example, the syntax for triggered execution
is ~ <command>. To have more than one command run for each triggering, use
semicolons. For example, the following runs clean and then compile each time
a source file changes:

> ~ ;clean;compile

Read commands from a file

The < command reads commands from the files provided to it as arguments.
Run help < at the sbt prompt for details.

Define an alias for a command or task

The alias command defines, removes, and displays aliases for commands. Run
help alias at the sbt prompt for details.

Example usage:

> alias a=about
> alias

a = about

439

> a
[info] This is sbt ...
> alias a=
> alias
> a
[error] Not a valid command: a ...

Quickly evaluate a Scala expression

The eval command compiles and runs the Scala expression passed to it as an
argument. The result is printed along with its type. For example,

> eval 2+2
4: Int

Variables defined by an eval are not visible to subsequent evals, although
changes to system properties persist and affect the JVM that is running sbt. Use
the Scala REPL (console and related commands) for full support for evaluating
Scala code interactively.

Configure and use Scala

Set the Scala version used for building the project

The scalaVersion configures the version of Scala used for compilation. By de-
fault, sbt also adds a dependency on the Scala library with this version. See the
next section for how to disable this automatic dependency. If the Scala version
is not specified, the version sbt was built against is used. It is recommended to
explicitly specify the version of Scala.

For example, to set the Scala version to “2.11.1”,

scalaVersion := "2.11.1"

Disable the automatic dependency on the Scala library

sbt adds a dependency on the Scala standard library by default. To disable this
behavior, set the autoScalaLibrary setting to false.

autoScalaLibrary := false

Temporarily switch to a different Scala version

To set the Scala version in all scopes to a specific value, use the ++ command.
For example, to temporarily use Scala 2.10.4, run:

440

> ++ 2.10.4

Use a local Scala installation for building a project

Defining the scalaHome setting with the path to the Scala home directory will
use that Scala installation. sbt still requires scalaVersion to be set when a
local Scala version is used. For example,

scalaVersion := "2.10.0-local"

scalaHome := Some(file("/path/to/scala/home/"))

Build a project against multiple Scala versions

See cross building.

Enter the Scala REPL with a project’s dependencies on the classpath,
but not the compiled project classes

The consoleQuick action retrieves dependencies and puts them on the classpath
of the Scala REPL. The project’s sources are not compiled, but sources of any
source dependencies are compiled. To enter the REPL with test dependencies
on the classpath but without compiling test sources, run Test/consoleQuick.
This will force compilation of main sources.

Enter the Scala REPL with a project’s dependencies and compiled
code on the classpath

The console action retrieves dependencies and compiles sources and puts them
on the classpath of the Scala REPL. To enter the REPL with test dependencies
and compiled test sources on the classpath, run Test/console.

Enter the Scala REPL with plugins and the build definition on the
classpath

> consoleProject

For details, see the consoleProject page.

441

Cross-Build.html
Console-Project.html

Define the initial commands evaluated when entering the Scala REPL

Set console / initialCommands to set the initial statements to evaluate when
console and consoleQuick are run. To configure consoleQuick separately, use
consoleQuick / initialCommands. For example,

console / initialCommands := """println("Hello from console")"""

consoleQuick / initialCommands := """println("Hello from consoleQuick")"""

The consoleProject command is configured separately by consoleProject /
initialCommands. It does not use the value from console / initialCommands
by default. For example,

consoleProject / initialCommands := """println("Hello from consoleProject")"""

Define the commands evaluated when exiting the Scala REPL

Set console / cleanupCommands to set the statements to evaluate after ex-
iting the Scala REPL started by console and consoleQuick. To configure
consoleQuick separately, use consoleQuick / cleanupCommands. For exam-
ple,

console / cleanupCommands := """println("Bye from console")"""

consoleQuick / cleanupCommands := """println("Bye from consoleQuick")"""

The consoleProject command is configured separately by consoleProject /
cleanupCommands. It does not use the value from console / cleanupCommands
by default. For example,

consoleProject / cleanupCommands := """println("Bye from consoleProject")"""

Use the Scala REPL from project code

sbt runs tests in the same JVM as sbt itself and Scala classes are not in the
same class loader as the application classes. This is also the case in console
and when run is not forked. Therefore, when using the Scala interpreter, it is
important to set it up properly to avoid an error message like:

Failed to initialize compiler: class scala.runtime.VolatileBooleanRef not found.
** Note that as of 2.8 scala does not assume use of the java classpath.
** For the old behavior pass -usejavacp to scala, or if using a Settings
** object programmatically, settings.usejavacp.value = true.

The key is to initialize the Settings for the interpreter using embeddedDefaults.
For example:

442

val settings = new Settings
settings.embeddedDefaults[MyType]
val interpreter = new Interpreter(settings, ...)

Here, MyType is a representative class that should be included on the inter-
preter’s classpath and in its application class loader. For more background, see
the original proposal that resulted in embeddedDefaults being added.

Similarly, use a representative class as the type argument when using the break
and breakIf methods of ILoop, as in the following example:

def x(a: Int, b: Int) = {
import scala.tools.nsc.interpreter.ILoop
ILoop.breakIf[MyType](a != b, "a" -> a, "b" -> b)

}

Generate API documentation

Select javadoc or scaladoc

sbt will run javadoc if there are only Java sources in the project. If there are
any Scala sources, sbt will run scaladoc. (This situation results from scaladoc
not processing Javadoc comments in Java sources nor linking to Javadoc.)

Set the options used for generating scaladoc independently of compi-
lation

Scope scalacOptions to the doc task to configure scaladoc. Use := to defini-
tively set the options without appending to the options for compile. Scope to
Compile for main sources or to Test for test sources. For example,

Compile / doc / scalacOptions := Seq("-groups", "-implicits")

Add options for scaladoc to the compilation options

Scope scalacOptions to the doc task to configure scaladoc. Use += or ++=
to append options to the base options. To append a single option, use +=. To
append a Seq[String], use ++=. Scope to Compile for main sources or to Test
for test sources. For example,

Compile / doc / scalacOptions ++= Seq("-groups", "-implicits")

443

https://gist.github.com/404272

Set the options used for generating javadoc independently of compi-
lation

Scope javacOptions to the doc task to configure javadoc. Use := to definitively
set the options without appending to the options for compile. Scope to Compile
for main sources or to Test for test sources.

Add options for javadoc to the compilation options

Scope javacOptions to the doc task to configure javadoc. Use += or ++= to
append options to the base options. To append a single option, use +=. To
append a Seq[String], use ++=. Scope to Compile for main sources or to Test
for test sources. For example,

Compile / doc / javacOptions ++= Seq("-notimestamp", "-linksource")

Enable automatic linking to the external Scaladoc of managed depen-
dencies

Set autoAPIMappings := true for sbt to tell scaladoc where it can find the
API documentation for managed dependencies. This requires that dependencies
have this information in its metadata and you are using scaladoc for Scala
2.10.2 or later.

Enable manual linking to the external Scaladoc of managed depen-
dencies

Add mappings of type (File, URL) to apiMappings to manually tell scaladoc
where it can find the API documentation for dependencies. (This requires
scaladoc for Scala 2.10.2 or later.) These mappings are used in addition to
autoAPIMappings, so this manual configuration is typically done for unman-
aged dependencies. The File key is the location of the dependency as passed
to the classpath. The URL value is the base URL of the API documentation for
the dependency. For example,

apiMappings += (
(unmanagedBase.value / "a-library.jar") ->

url("https://example.org/api/")
)

Define the location of API documentation for a library

Set apiURL to define the base URL for the Scaladocs for your library. This will
enable clients of your library to automatically link against the API documenta-

444

tion using autoAPIMappings. (This only works for Scala 2.10.2 and later.) For
example,

apiURL := Some(url("https://example.org/api/"))

This information will get included in a property of the published pom.xml, where
it can be automatically consumed by sbt.

Define Custom Tasks

Define a Task that runs tests in specific sub-projects

Consider a hypothetical multi-build project with 3 subprojects. The following
defines a task myTestTask that will run the test Task in specific subprojects
core and tools but not client:

lazy val core = project.in(file("./core"))
lazy val tools = project.in(file("./tools"))
lazy val client = project.in(file("./client"))

lazy val myTestTask = taskKey[Unit]("my test task")

myTestTask := {
(core / Test / test).value
(tools / Test / test).value

}

How to take an action on startup

A global setting onLoad is of type State => State and is executed once, after
all projects are built and loaded. There is a similar hook onUnload for when a
project is unloaded.

Project unloading typically occurs as a result of a reload command or a set
command. Because the onLoad and onUnload hooks are global, modifying this
setting typically involves composing a new function with the previous value.
The following example shows the basic structure of defining onLoad.

Suppose you want to run a task named dependencyUpdates on start up. Here’s
what you can do:

lazy val dependencyUpdates = taskKey[Unit]("foo")

// This prepends the String you would type into the shell
lazy val startupTransition: State => State = { s: State =>
"dependencyUpdates" :: s

}

445

lazy val root = (project in file("."))
.settings(
ThisBuild / scalaVersion := "2.12.6",
ThisBuild / organization := "com.example",
name := "helloworld",
dependencyUpdates := { println("hi") },

// onLoad is scoped to Global because there's only one.
Global / onLoad := {

val old = (Global / onLoad).value
// compose the new transition on top of the existing one
// in case your plugins are using this hook.
startupTransition compose old

}
)

You can use this technique to switch the startup subproject too.

Track file inputs and outputs

Many sbt tasks depend on a collection of files. For example, the package task
generates a jar file containing the resources and class files, which are generated
by the compile task, for a project. Staring with version 1.3.0, sbt provides a
file management system that tracks the inputs and outputs of any task. The
task can query which of its file dependencies have changed since the task last
completed allowing it to incrementally re-build only the modified files. This
system integrates with Triggered execution so that the file dependencies of a
task are automatically monitored in a continuous build.

To best illustrate the file tracking system, we construct a build.sbt that illus-
trates all of the essential features. The example will be a project that is able
to build a shared library in c using gcc. This will be done with two tasks:
buildObjects, which compiles c source files to object files, and linkLibrary,
which links the object files into a shared library. These can be defined with:

import java.nio.file.Path
val buildObjects = taskKey[Seq[Path]]("Compiles c files into object files.")
val linkLibrary = taskKey[Path]("Links objects into a shared library.")

The buildObjects task will depend on *.c source file inputs. The linkLibrary
task depends on the output *.o object files generated by buildObjects. This
creates a build pipeline: if none of the input sources to buildObjects are
modified between calls to linkLibrary then neither compilation nor linking
should occur. Conversely, when input source changes are detected, sbt should
both generate new object files corresponding to the modified source files and
link the shared library.

446

Triggered-Execution.html

File inputs

It is natural for a task to specify the inputs on which it depends. These are
set with the fileInputs key, which has type: Seq[Glob] (see Globs). The
fileInputs are specified as Seq[Glob] so that more than one search query
may be provided, which may be necessary if sources are located in multiple
directories or different file types are needed within the same task.

When the fileInputs key is set in a given scope, sbt automatically generates a
task named allInputFiles for that scope that returns a Seq[Path] containing
all of the files matching the fileInputs queries. For convenience, there is an
extension method defined for Task[_] that translates foo.inputFiles to (foo
/ allInputFiles).value. We can use these to write a simple implementation
of buildObjects:

import scala.sys.process._
import java.nio.file.{ Files, Path }
import sbt.nio._
import sbt.nio.Keys._

val buildObjects = taskKey[Seq[Path]]("Compiles c files into object files.")
buildObjects / fileInputs += baseDirectory.value.toGlob / "src" / "*.c"
buildObjects := {

val outputDir = Files.createDirectories(streams.value.cacheDirectory.toPath)
def outputPath(path: Path): Path =
outputDir / path.getFileName.toString.replaceAll(".c$", ".o")

val logger = streams.value.log
buildObjects.inputFiles.map { path =>

val output = outputPath(path)
logger.info(s"Compiling $path to $output")
Seq("gcc", "-c", path.toString, "-o", output.toString).!!
output

}
}

This implementation will gather all of the files ending with the *.c extension
and shell out to gcc to compile them to the output directory.

sbt will automatically monitor any file matched by the globs specified by
fileInputs. In this case, modifying any file with *.c extension in the src
directory will trigger a build in a continuous build.

Incremental builds

Every time that buildObjects is invoked from the sbt shell, it will re-compile all
of the source files. This becomes expensive as the number of source files increases.
In addition to fileInputs, sbt also provides another api, inputFileChanges,

447

Globs.html

that provides information about what source files have changed since the last
time the task successfully completed. Using the inputFileChanges, we can
make the build above incremental:

import scala.sys.process._
import java.nio.file.{ Files, Path }
import sbt.nio._
import sbt.nio.Keys._

val buildObjects = taskKey[Seq[Path]]("Generate object files from c sources")
buildObjects / fileInputs += baseDirectory.value.toGlob / "src" / "*.c"
buildObjects := {

val outputDir = Files.createDirectories(streams.value.cacheDirectory.toPath)
val logger = streams.value.log
def outputPath(path: Path): Path =
outputDir / path.getFileName.toString.replaceAll(".c$", ".o")

def compile(path: Path): Path = {
val output = outputPath(path)
logger.info(s"Compiling $path to $output")
Seq("gcc", "-fPIC", "-std=gnu99", "-c", s"$path", "-o", s"$output").!!
output

}
val sourceMap = buildObjects.inputFiles.view.map(p => outputPath(p) -> p).toMap
val existingTargets = fileTreeView.value.list(outputDir.toGlob / **).flatMap { case (p, _) =>

if (!sourceMap.contains(p)) {
Files.deleteIfExists(p)
None

} else {
Some(p)

}
}.toSet
val changes = buildObjects.inputFileChanges
val updatedPaths = (changes.created ++ changes.modified).toSet
val needCompile = updatedPaths ++ sourceMap.filterKeys(!existingTargets(_)).values
needCompile.foreach(compile)
sourceMap.keys.toVector

}

The FileChangeReport makes it possible to write an incremental task without
manually tracking the input files. It is a sealed trait implemented by three case
classes:

1. Changes – indicates that one or more source files have been modified.
2. Unmodified – none of the source file have been modified since the last

run.
3. Fresh – there is no cache entry for the previous source file hashes.

It is sometimes convenient to pattern match on the result of the inputFileChanges:

448

foo.inputFileChanges match {
case FileChanges(created, deleted, modified, unmodified)

if created.nonEmpty || modified.nonEmpty =>
build(created ++ modified)
delete(deleted)

case _ => // no changes
}

The input file report says nothing about the outputs. This is why the
buildObjects implementation needs to check the target directory to see which
outputs exist. In that example, there is a 1:1 mapping between inputs and
outputs, but this need not be the case in general. An implementation of
buildObjects may include header files in the fileInputs. These are not
compiled themselves, but they may trigger re-compilation of one or more *.c
source files.

Note that calling buildObjects.inputFileChanges also causes buildObjects
/ fileInputs to automatically be watched in a continuous build.

File outputs

The outputs of a file are often best specified as the result of a task. In the
example above, buildObjects is a Task returning a Seq[Path] containing the
object files generated by compilation. sbt will automatically track the outputs
of any task that returns one of the following result types: Path, Seq[Path],
File or Seq[File]. We can use this to build on the buildObjects example to
write a task that links the object into a shared library:

val linkLibrary = taskKey[Path]("Links objects into a shared library.")
linkLibrary := {

val outputDir = Files.createDirectories(streams.value.cacheDirectory.toPath)
val logger = streams.value.log
val isMac = scala.util.Properties.isMac
val library = outputDir / s"mylib.${if (isMac) "dylib" else "so"}"
val linkOpts = if (isMac) Seq("-dynamiclib") else Seq("-shared", "-fPIC")
if (buildObjects.outputFileChanges.hasChanges || !Files.exists(library)) {
logger.info(s"Linking $library")
(Seq("gcc") ++ linkOpts ++ Seq("-o", s"$library") ++
buildObjects.outputFiles.map(_.toString)).!!

} else {
logger.debug(s"Skipping linking of $library")

}
library

}

Here the tracking was simpler because linking a shared library is not incremental.
Thus we have to rebuild if any of the outputs of buildObjects has changed or

449

if the library doesn’t exist.

Similar to fileInputs, there is a fileOutputs key. This can be used as an
alternative to returning the output files in the task when the outputs have a
known pattern. For example, buildObjects could have been defined as:

val buildObjects = taskKey[Unit]("Compiles c files into object files.")
buildObjects / fileOutputs := target.value / "objects" / ** / "*.o"

This can be useful when using an opaque external tool where the mapping of
inputs to outputs is not known.

Like allInputFiles, there is an allOutputFiles task of return type
Seq[Path] that is automatically generated for a task, foo, if the return type
of foo is one of Seq[Path], Path, Seq[File] or File. It is also generated if
foo / outputFiles is specified. When both fileOutputs is specified and the
return type represents a file or collection of files, the result of allOutputFiles
is the distinct union of the files returned by the task and the files described
by ouputFiles. Calling foo.outputFiles is syntactic sugar for (foo /
allOutputFiles).value.

Filters

The fileInputs and fileOutputs can be filtered beyond what is specified by
their Glob patterns. sbt provides four settings of type sbt.nio.file.PathFilter: 1.
fileInputIncludeFilter – only include file inputs that also match this filter
2. fileInputExcludeFilter– exclude any file inputs that also match this filter
3. fileOutputIncludeFilter – only include file inputs that also match this
filter 4. fileOutputExcludeFilter – exclude any file output that also match
this filter

By default, sbt sets

fileInputExcludeFilter := HiddenFileFilter.toNio || DirectoryFilter

Both fileInputIncludeFilter and fileInputOutputFilter are set
to AllPassFilter.toNio. The fileOutputExcludeFilter is set to
NothingFilter.toNio.

To exclude files matching with test in the name from buildObjects, write:

buildObjects / fileInputExcludeFilter := "*test*"

To preserve the previous excludes of hidden files and directories, write:

buildObjects / fileInputExcludeFilter :=
(buildObjects / fileInputExcludeFilter).value || "*test*"

or

buildObjects / fileInputExcludeFilter ~= { ef => ef || "*test*" }

450

Globs.html#path-filters

In most cases, it shouldn’t be necessary to set the fileInputIncludeFilter
since the path name filtering it should be handled by fileInputs itself. It also
shouldn’t commonly be necessary to filter the outputs.

Cleaning outputs

sbt automatically generates an implementation of clean scoped to the task foo
whenever it also generates the allOutputFiles task. Calling foo / clean will
remove all of the files previously generated by foo. It will not re-evaluate foo.
For example, calling buildObjects / clean will remove all of the object files
generated by the previous call to buildObjects. The generated clean tasks are
not transitive. Calling linkLibrary / clean will delete the shared library but
will not delete the object files generated by buildObjects.

File change tracking

For each input or output file tracked by sbt, there is an associated FileStamp.
This can either be the last modified time of the file or a hash. By default, inputs
are tracked using the hash and outputs are tracked using the last modified time.
To change this, set the inputFileStamper or outputFileStamper:

val generateSources = taskKey[Seq[Path]]("Generates source files from json schema.")
generateSources / fileInputs := baseDirectory.value.toGlob / "schema" / ** / "*.json"
generateSources / outputFileStamper := FileStamper.Hash

Continuous build file monitoring

In a continuous build, ~bar, for an arbitrary task, bar, given some task, foo,
any calls to foo.inputFiles and foo.inputFileChanges within bar will cause
all of the globs specified by foo / fileInputs to be monitored in a continuous
build. Transitive file input dependencies are automatically monitored. For
example, the ~linkLibrary continuous build command will monitor the *.c
source files defined for buildObjects.

Input files will only trigger a re-build if their hash has changed. This behavior
can be overridden with:

Global / watchForceTriggerOnAnyChange := true

Changes to file outputs, which are gathered with either foo.outputFiles or
foo.outputFileChanges, do not trigger a re-build.

Partial pipeline evaluation / error handling

The stamps for each file are tracked on a per-task basis. They are only updated
if the incremental task itself succeeds. In the example above, this means that the

451

current file last modified times for buildObjects are stored by the linkLibrary
task only when it succeeds. This means that buildObjects can be run many
times between calls to linkLibrary and linkLibrary will see the cumulative
changes to the outputs of buildObjects.

If linkLibrary fails to complete, sbt will also skip updating the last modified
times for the outputs of buildObjects corresponding to linkLibrary because
it is impossible to know in general which files were successfully processed.

Troubleshoot memory issues

sbt may sometimes run out of memory, leading to a crash or badly degraded
performance. The amount of memory needed by sbt is dependent on the number
of subprojects in the build and the plugins that are enabled. For projects with
a large memory footprint, it may be necessary to start sbt with an increased
java heap size. The default java heap size is 1GB. To increase it to 2GB, you
can run the following command:

sbt -J-Xmx2G

Any command argument with a leading -J is interpreted as a java vm argument.
To automatically increase the heap to 2GB in a project, create or edit the file
.sbtopts and add a line with -J-Xmx2G.

When sbt is run in interactive mode or as a server (i.e. it was started with sbt
--client or sbtn), it is important that each task in the build clean up all of
its resources or the memory footprint of sbt may grow over time. For example,
if the run task starts an Akka ActorSystem, it is necessary to shutdown the
ActorSystem before run exits or else the memory utilization of the sbt process
will increase each time run is invoked.

In order to fix memory leaks, it is necessary to figure out what classes are
persisting in memory longer than expected. The easiest way to do this is with
the jmap command, which is provided by the jdk, and a jvm memory analyzer
tool like VisualVM. Find the process id of the sbt process that you with to debug
using the ps command. Then run jmap -dump:format=b,file=leak.hprof
$SBT_PID. Open the leak.hprof file in VisualVM. It may be obvious what
classes are taking up the most memory, but sometimes it is necessary to click
the “Compute Retained Sizes” button. This may take a while if there is a large
heap, but it can identify what classes are taking up the most memory. Often
this will help you identify where there is a thread that has leaked or a cache
that has not been cleared.

452

https://doc.akka.io/docs/akka/current/general/actor-systems.html#terminating-actorsystem
https://docs.oracle.com/en/java/javase/11/tools/jmap.html
https://visualvm.github.io

Sequencing

One of the most frequently asked questions is in the form of “how do I do X
and then do Y in sbt”?

Generally speaking, that’s not how sbt tasks are set up. build.sbt is a DSL to
define dependency graph of tasks. This is covered in Execution semantics of
tasks. So ideally, what you should do is define task Y yourself, and depend on
the task X.

taskY := {
val x = taskX.value
x + 1

}

This is more constrained compared to the imperative style plain Scala code with
side effects such as the follows:

def foo(): Unit = {
doX()
doY()

}

The benefit of the dependency-oriented programming model is that sbt’s task
engine is able to reorder the task execution. When possible we run dependent
tasks in parallel. Another benefit is that we can deduplicate the graph, and
make sure that the task evaluation, such as Compile / compile, is called once
per command execution, as opposed to compiling the same source many times.

Because task system is generally set up this way, running something sequentially
is possible, but you will be fighting the system a bit, and it’s not always going
to be easy.

• Defining a sequential task with Def.sequential
• Defining a dynamic task with Def.taskDyn
• Doing something after an input task
• Defining a dynamic input task with Def.inputTaskDyn
• How to sequence using commands

Defining a sequential task with Def.sequential

sbt 0.13.8 added Def.sequential function to run tasks under semi-sequential
semantics. To demonstrate the sequential task, let’s create a custom task called
compilecheck that runs Compile / compile and then Compile / scalastyle
task added by scalastyle-sbt-plugin.

Here’s how to set it up

453

Custom-Settings.html#Execution+semantics+of+tasks
Custom-Settings.html#Execution+semantics+of+tasks
Howto-Sequential-Task.html
Howto-Dynamic-Task.html
Howto-After-Input-Task.html
Howto-Dynamic-Input-Task.html
Howto-Sequence-using-Commands.html
http://www.scalastyle.org/sbt.html

project/build.properties

sbt.version=1.9.8

project/style.sbt

addSbtPlugin("org.scalastyle" %% "scalastyle-sbt-plugin" % "1.0.0")

build.sbt

lazy val compilecheck = taskKey[Unit]("compile and then scalastyle")

lazy val root = (project in file("."))
.settings(
Compile / compilecheck := Def.sequential(
Compile / compile,
(Compile / scalastyle).toTask("")

).value
)

To call this task type in compilecheck from the shell. If the compilation fails,
compilecheck would stop the execution.

root> compilecheck
[info] Compiling 1 Scala source to /Users/x/proj/target/scala-2.10/classes...
[error] /Users/x/proj/src/main/scala/Foo.scala:3: Unmatched closing brace '}' ignored here
[error] }
[error] ^
[error] one error found
[error] (compile:compileIncremental) Compilation failed

Looks like we were able to sequence these tasks.

Defining a dynamic task with Def.taskDyn

If sequential task is not enough, another step up is the dynamic task. Unlike
Def.task which expects you to return pure value A, with a Def.taskDyn you
return a task sbt.Def.Initialize[sbt.Task[A]] which the task engine can
continue the rest of the computation with.

Let’s try implementing a custom task called compilecheck that runs Compile /
compile and then Compile / scalastyle task added by scalastyle-sbt-plugin.

project/build.properties

sbt.version=1.9.8

454

Howto-Sequential-Task.html
Tasks.html
http://www.scalastyle.org/sbt.html

project/style.sbt

addSbtPlugin("org.scalastyle" %% "scalastyle-sbt-plugin" % "1.0.0")

build.sbt v1

lazy val compilecheck = taskKey[sbt.inc.Analysis]("compile and then scalastyle")

lazy val root = (project in file("."))
.settings(
compilecheck := (Def.taskDyn {

val c = (Compile / compile).value
Def.task {

val x = (Compile / scalastyle).toTask("").value
c

}
}).value

)

Now we have the same thing as the sequential task, except we can now return
the result c from the first task.

build.sbt v2

If we can return the same return type as Compile / compile, might actually
rewire the key to our dynamic task.

lazy val root = (project in file("."))
.settings(
Compile / compile := (Def.taskDyn {

val c = (Compile / compile).value
Def.task {

val x = (Compile / scalastyle).toTask("").value
c

}
}).value

)

Now we can actually call Compile / compile from the shell and make it do
what we want it to do.

Doing something after an input task

Thus far we’ve mostly looked at tasks. There’s another kind of tasks called
input tasks that accepts user input from the shell. A typical example for this
is the Compile / run task. The scalastyle task is actually an input task too.
See input task for the details of the input tasks.

455

Input-Tasks.html

Now suppose we want to call Compile / run task and then open the browser
for testing purposes.

src/main/scala/Greeting.scala

object Greeting {
def main(args: Array[String]): Unit = {
println("hello " + args.toList)

}
}

build.sbt v1

lazy val runopen = inputKey[Unit]("run and then open the browser")

lazy val root = (project in file("."))
.settings(
runopen := {
(Compile / run).evaluated
println("open browser!")

}
)

Here, I’m faking the browser opening using println as the side effect. We can
now call this task from the shell:

> runopen foo
[info] Compiling 1 Scala source to /x/proj/...
[info] Running Greeting foo
hello List(foo)
open browser!

build.sbt v2

We can actually remove runopen key, by rewriting the new input task to Compile
/ run:

lazy val root = (project in file("."))
.settings(
Compile / run := {
(Compile / run).evaluated
println("open browser!")

}
)

456

Defining a dynamic input task with Def.inputTaskDyn

Let’s suppose that there’s a task already that does the browser opening called
openbrowser because of a plugin. Here’s how we can sequence a task after an
input tasks.

build.sbt v1

lazy val runopen = inputKey[Unit]("run and then open the browser")
lazy val openbrowser = taskKey[Unit]("open the browser")

lazy val root = (project in file("."))
.settings(
runopen := (Def.inputTaskDyn {

import sbt.complete.Parsers.spaceDelimited
val args = spaceDelimited("<args>").parsed
Def.taskDyn {
(Compile / run).toTask(" " + args.mkString(" ")).value
openbrowser

}
}).evaluated,
openbrowser := {
println("open browser!")

}
)

build.sbt v2

Trying to rewire Compile / run is going to be complicated. Since the reference
to the inner Compile / run is already inside the continuation task, simply
rewiring runopen to Compile / run will create a cyclic reference. To break the
cycle, we will introduce a clone of Compile / run called Compile / actualRun:

lazy val actualRun = inputKey[Unit]("The actual run task")
lazy val openbrowser = taskKey[Unit]("open the browser")

lazy val root = (project in file("."))
.settings(
Compile / run := (Def.inputTaskDyn {

import sbt.complete.Parsers.spaceDelimited
val args = spaceDelimited("<args>").parsed
Def.taskDyn {
(Compile / actualRun).toTask(" " + args.mkString(" ")).value
openbrowser

}
}).evaluated,

457

Comile / actualRun := Defaults.runTask(
Runtime / fullClasspath,
Compile / run / mainClass,
Compile / run / runner

).evaluated,
openbrowser := {
println("open browser!")

}
)

* Note that some tasks (ie. testOnly) will fail with trailing spaces, so a right
trim (.replaceAll("\s+$", "")) of the string built for toTask might be
needed to handle empty args.

The Compile / actualRun’s implementation was copy-pasted from run task’s
implementation in Defaults.scala.

Now we can call run foo from the shell and it will evaluate Compile /
actualRun with the passed in argument, and then evaluate the openbrowser
task.

How to sequence using commands

If all you care about is the side effects, and you really just want to emulate
humans typing in one command after another, a custom command might be
just want you need. This comes in handy for release procedures.

Here’s from the build script of sbt itself:

commands += Command.command("releaseNightly") { state =>
"stampVersion" ::
"clean" ::
"compile" ::
"publish" ::
"bintrayRelease" ::
state

}

How to define a custom dependency configuration

A dependency configuration (or configuration for short) defines a graph of library
dependencies, potentially with its own classpath, sources, generated packages,
etc. The dependency configuration concept comes from Ivy, which sbt used to
use for managed dependencies Library Dependencies, and from MavenScopes.

Some configurations you’ll see in sbt:

458

Library-Dependencies.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope

• Compile which defines the main build (src/main/scala).
• Test which defines how to build tests (src/test/scala).
• Runtime which defines the classpath for the run task.

Cautions on custom dependency configurations

A custom configuration should be considered only when you are introducing
either a new set of source code or its own library dependencies (like Test).

In general, it would be a bad idea to introduce configuration merely as a way
to namespace keys.

One drawback of the custom configuration is that the users will be confused
about the complexity around scoping. They might be familar with subprojects
and tasks, but it becomes complicated when configuration scoping is involved.

Another drawback is that there is limited support from sbt. For instance, you
can express that a configuration is meant to extend another configuration, but
there is no inheritance of settings. You have to provide all expected settings
and tasks. This means that when a new features are added to sbt, there’s a
good chance the custom configurations will not be covered. The same goes for
third-party plugins.

Example basic custom configuration

Here’s an example of a minimum custom configuration.

project/FuzzPlugin.scala

package com.example.sbtfuzz

import sbt._

object FuzzPlugin extends AutoPlugin {
object autoImport {

lazy val Fuzz = config("fuzz")
}
import autoImport._
override lazy val projectSettings =
inConfig(Fuzz)(Defaults.configSettings)

}

build.sbt

459

ThisBuild / scalaVersion := "2.13.4"
ThisBuild / version := "0.1.0-SNAPSHOT"

lazy val root = (project in file("."))
.configs(Fuzz)
.enablePlugins(FuzzPlugin, ScalafmtCliPlugin)
.settings(
name := "use",

)

Example sandbox configuration

One sometimes useful technique with a configuration is adding a side graph to
the user’s project so Coursier would download some JARs, which your task can
invoke. This is called a sandbox configuration. This can be used for instance to
invoke Scala 2.13 CLI version of scalafmt. As of sbt 1.4.x there’s a limitation
so the sandbox configuration must use the same Scala version as the user’s
subproject.

project/ScalafmtPlugin.scala

package com.example

import sbt._
import Keys._

object ScalafmtCliPlugin extends AutoPlugin {
object autoImport {

lazy val ScalafmtSandbox = config("scalafmt").hide
lazy val scalafmt = inputKey[Unit]("")

}
import autoImport._
override lazy val projectSettings = Seq(
ivyConfigurations += ScalafmtSandbox,
libraryDependencies += "org.scalameta" %% "scalafmt-cli" % "2.7.5" % ScalafmtSandbox,
scalafmt := (ScalafmtSandbox / run).evaluated

) ++ inConfig(ScalafmtSandbox)(
Seq(
run := Defaults.runTask(managedClasspath, run / mainClass, run / runner)
.evaluated,

managedClasspath := Classpaths.managedJars(
ScalafmtSandbox,
classpathTypes.value,
update.value,

)

460

) ++
inTask(run)(
Seq(
mainClass := Some("org.scalafmt.cli.Cli"),
fork := true, // to avoid exit

) ++ Defaults.runnerSettings
)

)
}

Enabling ScalafmtPlugin would add scalafmt task, which runs the CLI.

sbt:custom-configs> scalafmt --version
[info] running (fork) org.scalafmt.cli.Cli --version
[info] scalafmt 2.7.5
[success] Total time: 3 s, completed Feb 8, 2021 12:01:34 AM
sbt:custom-configs> scalafmt
[info] running (fork) org.scalafmt.cli.Cli
[info] Reformatting...

Reformatting...
[success] Total time: 6 s, completed Feb 8, 2021 12:01:40 AM

How do I add a test configuration?

See the Additional test configurations section of Testing.

Examples

This section of the documentation has example sbt build definitions and code.
Contributions are welcome!

You may want to read the Getting Started Guide as a foundation for under-
standing the examples.

.sbt build examples

Note: As of sbt 0.13.7 blank lines are no longer used to delimit build.sbt files.
The following example requires sbt 0.13.7+.

Listed here are some examples of settings (each setting is independent). See
.sbt build definition for details.

import scala.concurrent.duration._

// factor out common settings
ThisBuild / organization := "org.myproject"

461

Testing.html#additional-test-configurations
Testing.html
Getting-Started.html
Basic-Def.html

ThisBuild / scalaVersion := "2.12.18"
// set the Scala version used for the project
ThisBuild / version := "0.1.0-SNAPSHOT"

// set the prompt (for this build) to include the project id.
ThisBuild / shellPrompt := { state => Project.extract(state).currentRef.project + "> " }

// define ModuleID for library dependencies
lazy val scalacheck = "org.scalacheck" %% "scalacheck" % "1.17.0"

// define ModuleID using string interpolator
lazy val osmlibVersion = "2.5.2-RC1"
lazy val osmlib = ("net.sf.travelingsales" % "osmlib" % osmlibVersion from
s"""http://downloads.sourceforge.net/project/travelingsales/libosm/$osmlibVersion/libosm-$osmlibVersion.jar""")

lazy val root = (project in file("."))
.settings(
// set the name of the project
name := "My Project",

// set the main Scala source directory to be <base>/src
Compile / scalaSource := baseDirectory.value / "src",

// set the Scala test source directory to be <base>/test
Test / scalaSource := baseDirectory.value / "test",

// add a test dependency on ScalaCheck
libraryDependencies += scalacheck % Test,

// add compile dependency on osmlib
libraryDependencies += osmlib,

// reduce the maximum number of errors shown by the Scala compiler
maxErrors := 20,

// increase the time between polling for file changes when using continuous execution
pollInterval := 1.second,

// append several options to the list of options passed to the Java compiler
javacOptions ++= Seq("-source", "1.5", "-target", "1.5"),

// append -deprecation to the options passed to the Scala compiler
scalacOptions += "-deprecation",

// define the statements initially evaluated when entering 'console', 'consoleQuick', or 'consoleProject'
initialCommands := """

462

import System.{currentTimeMillis => now}
def time[T](f: => T): T = {

val start = now
try { f } finally { println("Elapsed: " + (now - start)/1000.0 + " s") }

}""".stripMargin,

// set the initial commands when entering 'console' or 'consoleQuick', but not 'consoleProject'
console / initialCommands := "import myproject._",

// set the main class for packaging the main jar
// 'run' will still auto-detect and prompt
// change Compile to Test to set it for the test jar
Compile / packageBin / mainClass := Some("myproject.MyMain"),

// set the main class for the main 'run' task
// change Compile to Test to set it for 'Test/run'
Compile / run / mainClass := Some("myproject.MyMain"),

// add <base>/input to the files that '~' triggers on
watchSources += baseDirectory.value / "input",

// add a maven-style repository
resolvers += "name" at "url",

// add a sequence of maven-style repositories
resolvers ++= Seq("name" at "url"),

// define the repository to publish to
publishTo := Some("name" at "url"),

// set Ivy logging to be at the highest level
ivyLoggingLevel := UpdateLogging.Full,

// disable updating dynamic revisions (including -SNAPSHOT versions)
offline := true,

// set the prompt (for the current project) to include the username
shellPrompt := { state => System.getProperty("user.name") + "> " },

// disable printing timing information, but still print [success]
showTiming := false,

// disable printing a message indicating the success or failure of running a task
showSuccess := false,

// change the format used for printing task completion time

463

timingFormat := {
import java.text.DateFormat
DateFormat.getDateTimeInstance(DateFormat.SHORT, DateFormat.SHORT)

},

// disable using the Scala version in output paths and artifacts
crossPaths := false,

// fork a new JVM for 'run' and 'Test/run'
fork := true,

// fork a new JVM for 'Test/run', but not 'run'
Test / fork := true,

// add a JVM option to use when forking a JVM for 'run'
javaOptions += "-Xmx2G",

// only use a single thread for building
parallelExecution := false,

// Execute tests in the current project serially
// Tests from other projects may still run concurrently.
Test / parallelExecution := false,

// set the location of the JDK to use for compiling Java code.
// if 'fork' is true, this is used for 'run' as well
javaHome := Some(file("/usr/lib/jvm/sun-jdk-1.6")),

// Use Scala from a directory on the filesystem instead of retrieving from a repository
scalaHome := Some(file("/home/user/scala/trunk/")),

// don't aggregate clean (See FullConfiguration for aggregation details)
clean / aggregate := false,

// only show warnings and errors on the screen for compilations.
// this applies to both Test/compile and compile and is Info by default
compile / logLevel := Level.Warn,

// only show warnings and errors on the screen for all tasks (the default is Info)
// individual tasks can then be more verbose using the previous setting
logLevel := Level.Warn,

// only store messages at info and above (the default is Debug)
// this is the logging level for replaying logging with 'last'
persistLogLevel := Level.Debug,

464

// only show 10 lines of stack traces
traceLevel := 10,

// only show stack traces up to the first sbt stack frame
traceLevel := 0,

// add SWT to the unmanaged classpath
Compile / unmanagedJars += Attributed.blank(file("/usr/share/java/swt.jar")),

// publish test jar, sources, and docs
Test / publishArtifact := true,

// disable publishing of main docs
Compile / packageDoc / publishArtifact := false,

// change the classifier for the docs artifact
packageDoc / artifactClassifier := Some("doc"),

// Copy all managed dependencies to <build-root>/lib_managed/
// This is essentially a project-local cache. There is only one
// lib_managed/ in the build root (not per-project).
retrieveManaged := true,

/* Specify a file containing credentials for publishing. The format is:
realm=Sonatype Nexus Repository Manager
host=nexus.scala-tools.org
user=admin
password=admin123
*/
credentials += Credentials(Path.userHome / ".ivy2" / ".credentials"),

// Directly specify credentials for publishing.
credentials += Credentials("Sonatype Nexus Repository Manager", "nexus.scala-tools.org", "admin", "admin123"),

// Exclude transitive dependencies, e.g., include log4j without including logging via jdmk, jmx, or jms.
libraryDependencies +=
"log4j" % "log4j" % "1.2.15" excludeAll(
ExclusionRule(organization = "com.sun.jdmk"),
ExclusionRule(organization = "com.sun.jmx"),
ExclusionRule(organization = "javax.jms")

)
)

465

.sbt build with .scala files example

.sbt builds can be supplemented with project/*.scala files. When the build
file gets large enough, the first thing to factor out are resolvers and dependencies.

project/Resolvers.scala

import sbt._
import Keys._

object Resolvers {
val sunrepo = "Sun Maven2 Repo" at "http://download.java.net/maven/2"
val sunrepoGF = "Sun GF Maven2 Repo" at "http://download.java.net/maven/glassfish"
val oraclerepo = "Oracle Maven2 Repo" at "http://download.oracle.com/maven"

val oracleResolvers = Seq(sunrepo, sunrepoGF, oraclerepo)
}

project/Dependencies.scala

import sbt._
import Keys._

object Dependencies {
val logbackVersion = "0.9.16"
val grizzlyVersion = "1.9.19"

val logbackcore = "ch.qos.logback" % "logback-core" % logbackVersion
val logbackclassic = "ch.qos.logback" % "logback-classic" % logbackVersion

val jacksonjson = "org.codehaus.jackson" % "jackson-core-lgpl" % "1.7.2"

val grizzlyframwork = "com.sun.grizzly" % "grizzly-framework" % grizzlyVersion
val grizzlyhttp = "com.sun.grizzly" % "grizzly-http" % grizzlyVersion
val grizzlyrcm = "com.sun.grizzly" % "grizzly-rcm" % grizzlyVersion
val grizzlyutils = "com.sun.grizzly" % "grizzly-utils" % grizzlyVersion
val grizzlyportunif = "com.sun.grizzly" % "grizzly-portunif" % grizzlyVersion

val sleepycat = "com.sleepycat" % "je" % "4.0.92"

val apachenet = "commons-net" % "commons-net" % "2.0"
val apachecodec = "commons-codec" % "commons-codec" % "1.4"

466

val scalatest = "org.scalatest" %% "scalatest" % "3.2.17"
}

These files can be used mange library dependencies in one place.

project/ShellPromptPlugin.scala

When you want to implement custom commands or tasks, you can organize your
build by defining an one-off auto plugin.

import sbt._
import Keys._
import scala.sys.process._

// Shell prompt which show the current project and git branch
object ShellPromptPlugin extends AutoPlugin {

override def trigger = allRequirements
override lazy val projectSettings = Seq(
shellPrompt := buildShellPrompt

)
val devnull: ProcessLogger = new ProcessLogger {

def out(s: => String): Unit = {}
def err(s: => String): Unit = {}
def buffer[T] (f: => T): T = f

}
def currBranch =
("git status -sb" lineStream_! devnull headOption)
.getOrElse("-").stripPrefix("## ")

val buildShellPrompt: State => String = {
case (state: State) =>

val currProject = Project.extract (state).currentProject.id
s"""$currProject:$currBranch> """

}
}

This auto plugin will display the current project name and the git branch.

build.sbt

Now that we factored out custom settings and dependencies out to
project/*.scala, we can make use of them in build.sbt:

import Resolvers._
import Dependencies._

// factor out common settings into a sequence

467

lazy val buildSettings = Seq(
organization := "com.example",
version := "0.1.0",
scalaVersion := "2.12.18"

)

// Sub-project specific dependencies
lazy val commonDeps = Seq(
logbackcore,
logbackclassic,
jacksonjson,
scalatest % Test

)

lazy val serverDeps = Seq(
grizzlyframwork,
grizzlyhttp,
grizzlyrcm,
grizzlyutils,
grizzlyportunif,
sleepycat,
scalatest % Test

)

lazy val pricingDeps = Seq(
apachenet,
apachecodec,
scalatest % Test

)

lazy val cdap2 = (project in file("."))
.aggregate(common, server, compact, pricing, pricing_service)
.settings(buildSettings)

lazy val common = (project in file("cdap2-common"))
.settings(
buildSettings,
libraryDependencies ++= commonDeps

)

lazy val server = (project in file("cdap2-server"))
.dependsOn(common)
.settings(
buildSettings,
resolvers := oracleResolvers,
libraryDependencies ++= serverDeps

468

)

lazy val pricing = (project in file("cdap2-pricing"))
.dependsOn(common, compact, server)
.settings(
buildSettings,
libraryDependencies ++= pricingDeps

)

lazy val pricing_service = (project in file("cdap2-pricing-service"))
.dependsOn(pricing, server)
.settings(buildSettings)

lazy val compatct = (project in file("compact-hashmap"))
.settings(buildSettings)

Advanced configurations example

This is an example .sbt build definition that demonstrates using configurations
to group dependencies.

The utils module provides utilities for other modules. It uses configurations
to group dependencies so that a dependent project doesn’t have to pull in all
dependencies if it only uses a subset of functionality. This can be an alternative
to having multiple utilities modules (and consequently, multiple utilities jars).

In this example, consider a utils project that provides utilities related to both
Scalate and Saxon. It therefore needs both Scalate and Saxon on the compi-
lation classpath and a project that uses all of the functionality of ‘utils’ will
need these dependencies as well. However, project a only needs the utilities
related to Scalate, so it doesn’t need Saxon. By depending only on the scalate
configuration of utils, it only gets the Scalate-related dependencies.

// Custom configurations
lazy val Common = config("common").describedAs("Dependencies required in all configurations.")
lazy val Scalate = config("scalate").extend(Common).describedAs("Dependencies for using Scalate utilities.")
lazy val Saxon = config("saxon").extend(Common).describedAs("Dependencies for using Saxon utilities.")

// Define a customized compile configuration that includes
// dependencies defined in our other custom configurations
lazy val CustomCompile = config("compile").extend(Saxon, Common, Scalate)

// factor out common settings
ThisBuild / organization := "com.example"
ThisBuild / scalaVersion := "2.12.18"
ThisBuild / version := "0.1.0-SNAPSHOT"

469

Basic-Def.html

// An example project that only uses the Scalate utilities.
lazy val a = (project in file("a"))
.dependsOn(utils % "compile->scalate")

// An example project that uses the Scalate and Saxon utilities.
// For the configurations defined here, this is equivalent to doing dependsOn(utils),
// but if there were more configurations, it would select only the Scalate and Saxon
// dependencies.
lazy val b = (project in file("b"))
.dependsOn(utils % "compile->scalate,saxon")

// Defines the utilities project
lazy val utils = (project in file("utils"))
.settings(

inConfig(Common)(Defaults.configSettings), // Add the src/common/scala/ compilation configuration.
addArtifact(Common / packageBin / artifact, Common / packageBin), // Publish the common artifact

// We want our Common sources to have access to all of the dependencies on the classpaths
// for compile and test, but when depended on, it should only require dependencies in 'common'
Common / classpathConfiguration := CustomCompile,

// Modify the default Ivy configurations.
// 'overrideConfigs' ensures that Compile is replaced by CustomCompile
ivyConfigurations := overrideConfigs(Scalate, Saxon, Common, CustomCompile)(ivyConfigurations.value),

// Put all dependencies without an explicit configuration into Common (optional)
defaultConfiguration := Some(Common),

// Declare dependencies in the appropriate configurations
libraryDependencies ++= Seq(

"org.fusesource.scalate" % "scalate-core" % "1.5.0" % Scalate,
"org.squeryl" %% "squeryl" % "0.9.5-6" % Scalate,
"net.sf.saxon" % "saxon" % "8.7" % Saxon

)
)

Advanced command example

This is an advanced example showing some of the power of the new settings
system. It shows how to temporarily modify all declared dependencies in the
build, regardless of where they are defined. It directly operates on the final
Seq[Setting[_]] produced from every setting involved in the build.

The modifications are applied by running canonicalize. A reload or using set

470

reverts the modifications, requiring canonicalize to be run again.

This particular example shows how to transform all declared dependencies on
ScalaCheck to use version 1.8. As an exercise, you might try transforming other
dependencies, the repositories used, or the scalac options used. It is possible to
add or remove settings as well.

This kind of transformation is possible directly on the settings of Project, but it
would not include settings automatically added from plugins or build.sbt files.
What this example shows is doing it unconditionally on all settings in all projects
in all builds, including external builds.

import sbt._
import Keys._

object Canon extends AutoPlugin {
// Registers the canonicalize command in every project
override def trigger = allRequirements
override def projectSettings = Seq(commands += canonicalize)

// Define the command. This takes the existing settings (including any session settings)
// and applies 'f' to each Setting[_]
def canonicalize = Command.command("canonicalize") { (state: State) =>

val extracted = Project.extract(state)
import extracted._
val transformed = session.mergeSettings map (s => f(s))
appendWithSession(transformed, state)

}

// Transforms a Setting[_].
def f(s: Setting[_]): Setting[_] = s.key.key match {
// transform all settings that modify libraryDependencies
case Keys.libraryDependencies.key =>
// hey scalac. T == Seq[ModuleID]
s.asInstanceOf[Setting[Seq[ModuleID]]].mapInit(mapLibraryDependencies)
// preserve other settings

case _ => s
}
// This must be idempotent because it gets applied after every transformation.
// That is, if the user does:
// libraryDependencies += a
// libraryDependencies += b
// then this method will be called for Seq(a) and Seq(a,b)
def mapLibraryDependencies(key: ScopedKey[Seq[ModuleID]], value: Seq[ModuleID]): Seq[ModuleID] =
value map mapSingle

// This is the fundamental transformation.

471

// Here we map all declared ScalaCheck dependencies to be version 1.8
def mapSingle(module: ModuleID): ModuleID =

if(module.name == "scalacheck") module.withRevision(revision = "1.8")
else module

}

Index

This is an index of common methods, types, and values you might find in an
sbt build definition. For command names, see Running. For available plugins,
see the plugins list.

Values and Types

Dependency Management

• ModuleID is the type of a dependency definition. See Library Manage-
ment.

• Artifact represents a single artifact (such as a jar or a pom) to be built
and published. See Library Management and Artifacts.

• A Resolver can resolve and retrieve dependencies. Many types of Resolvers
can publish dependencies as well. A repository is a closely linked idea that
typically refers to the actual location of the dependencies. However, sbt is
not very consistent with this terminology and repository and resolver are
occasionally used interchangeably.

• A ModuleConfiguration defines a specific resolver to use for a group of
dependencies.

• A Configuration is a useful Ivy construct for grouping dependencies. See
ivy-configurations. It is also used for scoping settings.

• Compile, Test, Runtime, Provided, and Optional are predefined config-
urations.

Settings and Tasks

• A Setting describes how to initialize a specific setting in the build. It can
use the values of other settings or the previous value of the setting being
initialized.

• A SettingsDefinition is the actual type of an expression in a build.sbt.
This allows either a single Setting or a sequence of settings (SettingList)
to be defined at once. The types in a .scala build definition always use
just a plain Setting.

• Initialize describes how to initialize a setting using other settings, but isn’t
bound to a particular setting yet. Combined with an initialization method
and a setting to initialize, it produces a full Setting.

472

Running.html
Communitiy-Plugins.html
../api/sbt/librarymanagement/ModuleID.html
Library-Management.html
Library-Management.html
../api/sbt/librarymanagement/Artifact.html
Library-Management.html
Artifacts.html
../api/sbt/librarymanagement/Resolver.html
../api/sbt/librarymanagement/ModuleConfiguration.html
../api/sbt/librarymanagement/Configuration.html
Scopes.html
Library-Management.html#ivy-configurations
Library-Management.html#ivy-configurations
../api/sbt/internal/util/Init$Setting.html
../api/sbt/internal/util/Init$SettingsDefinition.html
../api/sbt/internal/util/Init$Setting.html
../api/sbt/internal/util/Init$SettingList.html
Full-Def.html
../api/sbt/internal/util/Init$Setting.html
../api/sbt/internal/util/Init$Initialize.html
../api/sbt/internal/util/Init$Setting.html

• TaskKey, SettingKey, and InputKey are keys that represent a task or
setting. These are not the actual tasks, but keys that are used to refer
to them. They can be scoped to produce ScopedTask, ScopedSetting,
and ScopedInput. These form the base types that provide the Settings
methods.

• InputTask parses and tab completes user input, producing a task to run.
• Task is the type of a task. A task is an action that runs on demand. This

is in contrast to a setting, which is run once at project initialization.

Build Structure

• AutoPlugin is the trait implemented for sbt plugins.
• Project is both a trait and a companion object that declares a single

module in a build. See .scala build definition.
• Keys is an object that provides all of the built-in keys for settings and

tasks.
• State contains the full state for a build. It is mainly used by Commands

and sometimes Input Tasks. See also State and Actions.

Methods

Settings and Tasks

See the Getting Started Guide for details.

• :=, +=, ++= These construct a Setting, which is the fundamental type in
the settings system.

• value This uses the value of another setting or task in the definition of
a new setting or task. This method is special (it is a macro) and cannot
be used except in the argument of one of the setting definition methods
above (:=, …) or in the standalone construction methods Def.setting and
Def.task. See Task-Graph for details.

• in specifies the Scope or part of the Scope of a setting being referenced.
See scopes.

File and IO

See RichFile, PathFinder, and Paths for the full documentation.

• / When called on a single File, this is new File(x,y). For Seq[File], this
is applied for each member of the sequence..

• * and ** are methods for selecting children (*) or descendants (**) of a
File or Seq[File] that match a filter.

• |, ||, &&, &, -, and -- are methods for combining filters, which are often
used for selecting Files. See NameFilter and FileFilter. Note that methods

473

../api/sbt/TaskKey.html
../api/sbt/SettingKey.html
../api/sbt/InputKey.html
../api/sbt/ScopedTask.html
../api/sbt/ScopedSetting.html
../api/sbt/ScopedInput.html
../api/sbt/InputTask.html
../api/sbt/Task.html
../api/sbt/AutoPlugin.html
Using-Plugins.html
../api/sbt/Project.html
Full-Def.html
../api/sbt/Keys$.html
../api/sbt/State.html
Commands.html
Input-Tasks.html
Build-State.html
Basic-Def.html
../api/sbt/internal/util/Init$Setting.html
Basic-Def.html
Task-Graph.html
../api/sbt/Scope.html
../api/sbt/Scope.html
Scopes.html
../api/sbt/io/RichFile.html
../api/sbt/io/PathFinder.html
Paths.html
../api/sbt/io/NameFilter.html
../api/sbt/io/FileFilter.html

with these names also exist for other types, such as collections (like Seq)
and Parser (see Parsing Input).

• pair Used to construct mappings from a File to another File or to a
String. See Mapping Files.

• get forces a PathFinder (a call-by-name data structure) to a strict
Seq[File] representation. This is a common name in Scala, used by
types like Option.

Dependency Management

See Library Management for full documentation.

• % This is used to build up a ModuleID.
• %% This is similar to % except that it identifies a dependency that has been

cross built.
• from Used to specify the fallback URL for a dependency
• classifier Used to specify the classifier for a dependency.
• at Used to define a Maven-style resolver.
• intransitive Marks a dependency or Configuration as being intransitive.
• hide Marks a Configuration as internal and not to be included in the

published metadata.

Parsing

These methods are used to build up Parsers from smaller Parsers. They closely
follow the names of the standard library’s parser combinators. See Parsing Input
for the full documentation. These are used for Input Tasks and Commands.

• ~, ~>, <~ Sequencing methods.
• ??, ? Methods for making a Parser optional. ? is postfix.
• id Used for turning a Char or String literal into a Parser. It is generally

used to trigger an implicit conversion to a Parser.
• |, || Choice methods. These are common method names in Scala.
• ^^^ Produces a constant value when a Parser matches.
• +, * Postfix repetition methods. These are common method names in

Scala.
• map, flatMap Transforms the result of a Parser. These are common

method names in Scala.
• filter Restricts the inputs that a Parser matches on. This is a common

method name in Scala.
• - Prefix negation. Only matches the input when the original parser doesn’t

match the input.
• examples, token Tab completion
• !!! Provides an error message to use when the original parser doesn’t

match the input.

474

../api/sbt/internal/util/complete/Parser.html
Parsing-Input.html
Mapping-Files.html
../api/sbt/io/PathFinder.html
Library-Management.html
../api/sbt/librarymanagement/ModuleID.html
Cross-Build.html
../api/sbt/librarymanagement/ModuleID.html
../api/sbt/librarymanagement/Configuration.html
../api/sbt/librarymanagement/Configuration.html
../api/sbt/internal/util/complete/Parser.html
../api/sbt/internal/util/complete/Parser.html
Parsing-Input.html
Input-Tasks.html
Commands.html

Developer’s Guide (Work in progress)

This is the set of documentation about the future architecture of sbt. The target
audience of this document is the sbt plugin authors and sbt developers. See also
How can I help?

Towards sbt 1.0

On 2008-12-18, Mark Harrah announced sbt 0.3.2 as the initial release of sbt.
Mark remained the primary author of sbt until sbt 0.13.1 (2013-12-11). In 2014,
sbt project was handed over to the authors of this document Josh Suereth and
Eugene Yokota.

As we move towards sbt 1.0, we wish to stabilize what’s already stable and
innovate where it matters. There are several levels of stability:

• conceptual stability
• source compatibility of the build definition
• binary compatibility of the plugins

Concepts

Conceptually, sbt has been stable on what it does:

1. incremental compilation that supports Scala
2. dependency management that’s aware of Scala’s binary compatibility
3. task and plugins system that’s extensible using Scala
4. a text-based interactive shell

The only thing that we plan to change is the last point. In sbt 1.0, we will
replace the interactive shell with sbt server that’s accessible via JSON API and
a text-based client.

Source compatibility of the build definition

Source compatibility means that a build source that worked for sbt version
A works for another version B without modification. Our goal for sbt 1.0 is
to adopt Semantic Versioning, and maintain source compatibility of the build
during 1.x.y.

Binary compatibility of the plugins

Binary compatibility (“bincompat”) of the plugins means that a plugin that was
published for sbt version A works for another version B without recompilation.
sbt 0.13 has kept binary compatibility for 18 months as of March 2015. The
stability here helps maintain the sbt plugin ecosystem. Our goal for sbt 1.0 is

475

https://www.scala-sbt.org/community.html#how-can-I-help

to adopt Semantic Versioning, and maintain binary compatibility of the build
during 1.x.y.

From the development perspective, maintaining binary compatibility becomes
an additional constraint that we need to worry about whenever we make changes.
The root of the problem is that sbt 0.13 does not distinguish between public
API and internal implementation. Most things are open to plugins.

Modularization

The process we aim to take for sbt 1.0 is to disassemble sbt into smaller modules
and layers. To be clear, sbt 0.13’s codebase already does consist of numerous
subprojects.

Layers are more coarse-grained sets of subproject(s) that can be used indepen-
dently. Another purpose of the modularization is to distinguish between public
API and internal implementation. Reducing the surface area of the sbt code
base has several benefits:

• It makes it easier for the build users and the plugin authors to learn the
APIs.

• It makes it easier for us to maintain binary and semantic compatibilities.
• It encourages the reuse of the modules.

The following is a conceptual diagram of the layers:

Module diagram

We’ll discuss the details in the next page.

Module summary

The following is a conceptual diagram of the modular layers:

Module diagram

This diagram is arranged such that each layer depends only on the layers un-
derneath it.

IO API (sbt/io)

IO API is a low level API to deal with files and directories.

Serialization API (sbt/serialization)

Serialization API is an opinionated wrapper around Scala Pickling. The respon-
sibility of the serialization API is to turn values into JSON.

476

https://github.com/sbt/io
https://github.com/sbt/serialization
https://github.com/scala/pickling

Util APIs (sbt/util)

Util APIs provide commonly used features like logging and internal datatypes
used by sbt.

LibraryManagement API (sbt/librarymanagement)

sbt’s library management system is based on Apache Ivy, and as such the con-
cepts and terminology around the library management system are also influ-
enced by Ivy. The responsibility of the library management API is to calculate
the transitive dependency graph, and download artifacts from the given reposi-
tories.

IncrementalCompiler API (sbt/zinc)

Incremental compilation of Scala is so fundamental that we now seldom think
of it as a feature of sbt. There are number of subprojects/classes involved that
are actually internal details, and we should use this opportunity to hide them.

Build API (tbd)

This is the part that’s exposed to build.sbt. The responsibility of the module
is to load the build files and plugins, and provide a way for commands to be
executed on the state.

This might remain at sbt/sbt.

sbt Launcher (sbt/launcher)

The sbt launcher provides a generic container that can load and run programs
resolved using the Ivy dependency manager. sbt uses this as the deployment
mechanism, but it can be used for other purposes.

See foundweekends/conscript and Launcher for more details.

Client/Server (tbd)

Currently developed in sbt/sbt-remote-control. sbt Server provides a JSON-
based API wrapping functionality of the command line experience.

One of the clients will be the “terminal client”, which subsumes the command
line sbt shell. Other clients that are planned are IDE integrations.

Website (sbt/website)

This website’s source.

477

https://github.com/sbt/util
https://github.com/sbt/librarymanagement
https://github.com/sbt/zinc
https://github.com/sbt/sbt
https://github.com/sbt/launcher
https://github.com/foundweekends/conscript
Sbt-Launcher.html
https://github.com/sbt/sbt-remote-control
https://github.com/sbt/website

sbt Coding Guideline

This page discusses the coding style and other guidelines for sbt 1.0.

General goal

sbt 1.0 will primarily target Scala 2.12. We will cross-build against Scala 2.10.

Clean up old deprecation

Before 1.0 is release, we should clean up deprecations.

Aim for zero warnings (except deprecation)

On Scala 2.12 we should aim for zero warnings. One exception may be depreca-
tion if it’s required for cross-building.

Documentation

It is often useful to start with the Scaladoc before fleshing out a
trait/class implementation by forcing you to consider the need for
its existence.

All newly introduced public traits and classes and, to a lesser extent, functions
and methods, should have Scaladoc. A significant amount of existing sbt code
lacks documentation and we need to repair this situation over time. If you see
an opportunity to add some documentation, or improve existing documentation
then this will also help.

Package level documentation is a great place to describe how various components
interact, so please consider adding/enhancing that where possible.

For more information on good Scaladoc style, please refer to the Scaladoc Style
Guide

Modular design

Aim small

The fewer methods we can expose to the build user, the easier sbt becomes to
maintain.

Public APIs should be coded against “interfaces”

Code against interfaces.

478

https://docs.scala-lang.org/style/scaladoc.html
https://docs.scala-lang.org/style/scaladoc.html

Hide implementation details

The implementation details should be hidden behind sbt.internal.x packages,
where x could be the name of the main package (like io).

Less interdependence

Independent modules with fewer dependent libraries are easier to reuse.

Hide external classes

Avoid exposing external classes in the API, except for standard Scala and Java
classes.

Hide internal modules

A module may be declared internal if it has no use to the public.

Compiler flags

-encoding utf8
-deprecation
-feature
-unchecked
-Xlint
-language:higherKinds
-language:implicitConversions
-Xfuture
-Yinline-warnings
-Yno-adapted-args
-Ywarn-dead-code
-Ywarn-numeric-widen
-Ywarn-value-discard
-Xfatal-warnings

The -Xfatal-warnings may be removed if there are unavoidable warnings.

Package name and organization name

Use the package name appended with the layer name, such as sbt.io for
IO layer. The organization name for published artifacts should remain
org.scala-sbt.

479

Binary resiliency

A good overview on the topic of binary resiliency is Josh’s 2012 talk on Binary
resiliency. The guideline here applies mostly to publicly exposed APIs.

MiMa

Use MiMa.

Public traits should contain def declarations only

• val or var in a trait results in code generated at subclass and in the
artificial Foo$class.$init$

• lazy val results in code generated at subclass

Abstract classes are also useful

To trait, or not to trait?. Abstract classes are less flexible than traits, but traits
pose more problems for binary compatibility. Abstract classes also have better
Java interoperability.

Seal traits and abstract classes

If there’s no need to keep a class open, seal it.

Finalize the leaf classes

If there’s no need to keep a class open, finalize it.

Typeclass and subclass inheritance

The typeclass pattern with pure traits might ease maintaining binary compati-
bility more so than subclassing.

Avoid case classes, use sbt-datatype

Case classes involve code generation that makes it harder to maintain binary
compatibility over time.

Prefer method overloading over default parameter values

Default parameter values are effectively code generation, which makes them
difficult to maintain.

480

http://jsuereth.com/scala/2012/04/22/scaladays.html
https://github.com/lightbend/mima
http://www.artima.com/pins1ed/traits.html#12.7

Other public API matters

Here are other guidelines about the sbt public API.

Avoid Stringly-typed programming

Define datatypes.

Avoid overuse of def apply

def apply should be reserved for factory methods in a companion object that
returns type T.

Use specific datatypes (Vector, List, or Array), rather than Seq

scala.Seq is scala.collection.Seq, which is not immutable. Default to
Vector. Use List if constant prepending is needed. Use Array if Java in-
teroperability is needed. Note that using mutable collections is perfectly fine
within the implementation.

Avoid calling toSeq or anything with side-effects on Set

Set is fine if you stick to set operations, like contains and subsetOf. More
often than not, toSeq is called explicitly or implicitly, or some side-effecting
method is called from map. This introduces non-determinism to the code.

Avoid calling toSeq on Map

Same as above. This will introduce non-determinism.

Avoid functions and tuples in the signature, if Java interoperability
is needed

Instead of functions and tuples, turn them into a trait. This applies where
interoperability is a concern, like implementing incremental compilation.

Style matters

Use scalafmt

sbt-houserules comes with scalafmt for formatting source code consistently.

481

Avoid procedure syntax

Declare an explicit Unit return.

Define instances of typeclasses in their companion objects, when pos-
sible

This style is encouraged:

final class FooID {}
object FooID {

implicit val fooIdPicklerUnpicker: PicklerUnpickler[FooID] = ???
}

Implicit conversions for syntax (enrich-my-library pattern) should be
imported

Avoid defining implicit converters in companion objects and package objects.

Suppose the IO module introduces a URL enrichment called RichURI, and
LibraryManagement introduces a String enrichment called GroupID (for
ModuleID syntax). These implicit conversions should be defined in an object
named syntax in the respective package:

package sbt.io

object syntax {
implicit def uriToRichURI(uri: URI): RichURI = new RichURI(uri)

}

When all the layers are available, the sbt package should also define an object
called syntax which forwards implicit conversions from all the layers:

package sbt

object syntax {
implicit def uriToRichURI(uri: URI): io.RichURI = io.syntax.uriToRichURI(uri)
....

}

sbt-datatype

sbt-datatype is a code generation library and an sbt autoplugin that generates
growable datatypes and helps developers avoid breakage of binary compatibility.

Unlike standard Scala case classes, the datatypes (or pseudo case classes) gen-
erated by this library allow the developer to add new fields to the defined
datatypes without breaking binary compatibility, while offering (almost) the

482

same functionality as plain case classes. The only difference is that datatype
doesn’t generate unapply or copy methods, because they would break binary
compatibility.

In addition, sbt-datatype is also able to generate JSON codec for sjson-new,
which can work against various JSON backends.

Our plugin takes as input a datatype schema in the form of a JSON object,
whose format is based on the format defined by Apache Avro, and generates the
corresponding code in Java or Scala along with the boilerplate code that will
allow the generated classes to remain binary-compatible with previous versions
of the datatype.

The source code of the library and autoplugin can be found on GitHub.

Using the plugin

To enable the plugin for your build, put the following line in project/datatype.sbt:

addSbtPlugin("org.scala-sbt" % "sbt-datatype" % "0.2.2")

Your datatype definitions should be placed by default in src/main/datatype
and src/test/datatype. Here’s how your build should be configured:

lazy val library = (project in file("library"))
.enablePlugins(DatatypePlugin)
.settings(
name := "foo library",

)

Datatype schema

Datatype is able to generate three kinds of types:

1. Records
2. Interfaces
3. Enums

Records

Records are mapped to Java or Scala classes, corresponding to the standard
case classes in Scala.

{
"types": [
{
"name": "Person",
"type": "record",

483

http://avro.apache.org
https://github.com/sbt/sbt-datatype

"target": "Scala",
"fields": [
{
"name": "name",
"type": "String"

},
{
"name": "age",
"type": "int"

}
]

}
]

}

This schema will produce the following Scala class:

final class Person(
val name: String,
val age: Int) extends Serializable {
override def equals(o: Any): Boolean = o match {

case x: Person => (this.name == x.name) && (this.age == x.age)
case _ => false

}
override def hashCode: Int = {
37 * (37 * (17 + name.##) + age.##)

}
override def toString: String = {
"Person(" + name + ", " + age + ")"

}
private[this] def copy(name: String = name, age: Int = age): Person = {

new Person(name, age)
}
def withName(name: String): Person = {
copy(name = name)

}
def withAge(age: Int): Person = {
copy(age = age)

}
}
object Person {

def apply(name: String, age: Int): Person = new Person(name, age)
}

Or the following Java code (after changing the target property to "Java"):

public final class Person implements java.io.Serializable {
private String name;

484

private int age;
public Person(String _name, int _age) {

super();
name = _name;
age = _age;

}
public String name() {

return this.name;
}
public int age() {

return this.age;
}
public boolean equals(Object obj) {

if (this == obj) {
return true;

} else if (!(obj instanceof Person)) {
return false;

} else {
Person o = (Person)obj;
return name().equals(o.name()) && (age() == o.age());

}
}
public int hashCode() {

return 37 * (37 * (17 + name().hashCode()) + (new Integer(age())).hashCode());
}
public String toString() {

return "Person(" + "name: " + name() + ", " + "age: " + age() + ")";
}

}

Interfaces

Interfaces are mapped to Java abstract classes or Scala abstract classes.
They can be extended by other interfaces or records.

{
"types": [
{
"name": "Greeting",
"namespace": "com.example",
"target": "Scala",
"type": "interface",
"fields": [
{
"name": "message",
"type": "String"

485

}
],
"types": [
{
"name": "SimpleGreeting",
"namespace": "com.example",
"target": "Scala",
"type": "record"

}
]

}
]

}

This generates abstract class named Greeting and a class named SimpleGreeting
that extends Greeting.

In addition, interfaces can define messages, which generates abstract method
declarations.

{
"types": [
{
"name": "FooService",
"target": "Scala",
"type": "interface",
"messages": [
{
"name": "doSomething",
"response": "int*",
"request": [
{

"name": "arg0",
"type": "int*",
"doc": [
"The first argument of the message.",

]
}

]
}

]
}

]
}

Enums

486

Enums are mapped to Java enumerations or Scala case objects.

{
"types": [
{
"name": "Weekdays",
"type": "enum",
"target": "Java",
"symbols": [
"Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday"

]
}

]
}

This schema will generate the following Java code:

public enum Weekdays {
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday

}

Or the following Scala code (after changing the target property to):

sealed abstract class Weekdays extends Serializable
object Weekdays {

case object Monday extends Weekdays
case object Tuesday extends Weekdays
case object Wednesday extends Weekdays
case object Thursday extends Weekdays
case object Friday extends Weekdays
case object Saturday extends Weekdays
case object Sunday extends Weekdays

}

Using datatype to retain binary compatibility

By using the since and default parameters, it is possible to grow existing
datatypes while remaining binary compatible with classes that have been com-
piled against an earlier version of your datatype definition.

Consider the following initial version of a datatype:

487

{
"types": [
{
"name": "Greeting",
"type": "record",
"target": "Scala",
"fields": [
{
"name": "message",
"type": "String"

}
]

}
]

}

The generated code could be used in a Scala program using the following code:

val greeting = Greeting("hello")

Imagine now that you would like to extend your datatype to include a date to
the Greetings. The datatype can be modified accordingly:

{
"types": [
{
"name": "Greeting",
"type": "record",
"target": "Scala",
"fields": [
{
"name": "message",
"type": "String"

},
{
"name": "date",
"type": "java.util.Date"

}
]

}
]

}

Unfortunately, the code that used Greeting would no longer compile, and
classes that have been compiled against the previous version of the datatype
would crash with a NoSuchMethodError.

To circumvent this problem and allow you to grow your datatypes, it is possible
to indicate the version since the field exists and a default value in the datatype

488

definition:

{
"types": [
{
"name": "Greeting",
"type": "record",
"target": "Scala",
"fields": [
{
"name": "message",
"type": "String"

},
{
"name": "date",
"type": "java.util.Date",
"since": "0.2.0",
"default": "new java.util.Date()"

}
]

}
]

}

Now the code that was compiled against previous definitions of the datatype
will still run.

JSON codec generation

Adding JsonCodecPlugin to the subproject will generate sjson-new JSON codes
for the datatypes.

lazy val root = (project in file("."))
.enablePlugins(DatatypePlugin, JsonCodecPlugin)
.settings(
scalaVersion := "2.11.8",
libraryDependencies += "com.eed3si9n" %% "sjson-new-scalajson" % "0.4.1"

)

codecNamespace can be used to specify the package name for the codecs.

{
"codecNamespace": "com.example.codec",
"fullCodec": "CustomJsonProtocol",
"types": [
{
"name": "Person",

489

"namespace": "com.example",
"type": "record",
"target": "Scala",
"fields": [
{
"name": "name",
"type": "String"

},
{
"name": "age",
"type": "int"

}
]

}
]

}

JsonFormat traits will be generated under com.example.codec package, along
with a full codec named CustomJsonProtocol that mixes in all the traits.

scala> import sjsonnew.support.scalajson.unsafe.{ Converter, CompactPrinter, Parser }
import sjsonnew.support.scalajson.unsafe.{Converter, CompactPrinter, Parser}

scala> import com.example.codec.CustomJsonProtocol._
import com.example.codec.CustomJsonProtocol._

scala> import com.example.Person
import com.example.Person

scala> val p = Person("Bob", 20)
p: com.example.Person = Person(Bob, 20)

scala> val j = Converter.toJsonUnsafe(p)
j: scala.json.ast.unsafe.JValue = JObject([Lscala.json.ast.unsafe.JField;@6731ad72)

scala> val s = CompactPrinter(j)
s: String = {"name":"Bob","age":20}

scala> val x = Parser.parseUnsafe(s)
x: scala.json.ast.unsafe.JValue = JObject([Lscala.json.ast.unsafe.JField;@7331f7f8)

scala> val q = Converter.fromJsonUnsafe[Person](x)
q: com.example.Person = Person(Bob, 20)

scala> assert(p == q)

490

Existing parameters for protocols, records, etc.

All the elements of the schema definition accept a number of parameters that
will influence the generated code. These parameters are not available for every
node of the schema. Please refer to the syntax summary to see whether a
parameters can be defined for a node.

name

This parameter defines the name of a field, record, field, etc.

target

This parameter determines whether the code will be generated in Java or Scala.

namespace

This parameter exists only for Definitions. It determines the package in which
the code will be generated.

doc

The Javadoc that will accompany the generated element.

fields

For a protocol or a record only, it describes all the fields that compose the
generated entity.

types

For a protocol, it defines the child protocols and records that extend it.

For an enumeration, it defines the values of the enumeration.

since

This parameter exists for fields only. It indicates the version in which the field
has been added to its parent protocol or record.

When this parameter is defined, default must also be defined.

default

This parameter exists for fields only. It indicates what the default value should
be for this field, in case it is used by a class that has been compiled against an
earlier version of this datatype.

It must contain an expression which is valid in the target language of the parent
protocol or record.

type for fields

It indicates what is the underlying type of the field.

491

Always use the type that you want to see in Scala. For instance, if your field
will contain an integer value, use Int rather than Java’s int. datatype will
automatically use Java’s primitive types if they are available.

For non-primitive types, it is recommended to write the fully-qualified type.

type for other definitions

It simply indicates the kind of entity that you want to generate: protocol,
record or enumeration.

Settings

This location can be changed by setting a new location in your build definition:

datatypeSource in generateDatatypes := file("some/location")

The plugin exposes other settings for Scala code generation:

1. Compile / generateDatatypes / datatypeScalaFileNames This set-
ting accepts a function Definition => File which will determine the
filename for every generated Scala definition.

2. Compile / generateDatatypes / datatypeScalaSealInterfaces
This setting accepts a boolean value, and will determine whether
interfaces should be sealed or not.

Syntax summary

Schema := { "types": [Definition*]
(, "codecNamespace": string constant)?
(, "fullCodec": string constant)? }

Definition := Record | Interface | Enumeration

Record := { "name": ID,
"type": "record",
"target": ("Scala" | "Java")

(, "namespace": string constant)?
(, "doc": string constant)?
(, "fields": [Field*])? }

Interface := { "name": ID,
"type": "interface",
"target": ("Scala" | "Java")

(, "namespace": string constant)?
(, "doc": string constant)?
(, "fields": [Field*])?

492

(, "messages": [Message*])?
(, "types": [Definition*])? }

Enumeration := { "name": ID,
"type": "enum",
"target": ("Scala" | "Java")

(, "namespace": string constant)?
(, "doc": string constant)?
(, "symbols": [Symbol*])? }

Symbol := ID
{ "name": ID

(, "doc": string constant)? }

Field := { "name": ID,
"type": ID

(, "doc": string constant)?
(, "since": version number string)?
(, "default": string constant)? }

Message := { "name": ID,
"response": ID

(, "request": [Request*])?
(, "doc": string constant)? }

Request := { "name": ID,
"type": ID

(, "doc": string constant)? }

Compiler Interface

The compiler interface is the communication link between sbt and the Scala
compiler.

It is used to get information from the Scala compiler, and must therefore be
compiled against the Scala version in use for the configured projects.

The code for this project can be found in the directory internal/compiler-bridge.

Fetching the most specific sources

Because the compiler interface is recompiled against each Scala version in use
in your project, its source must stay compatible with all the Scala versions that
sbt supports (from Scala 2.8 to the latest version of Scala).

493

https://github.com/sbt/zinc/tree/v1.1.0/internal/compiler-bridge

This comes at great cost for both the sbt maintainers and the Scala compiler
authors:

1. The compiler authors cannot remove old and deprecated public APIs from
the Scala compiler.

2. sbt cannot use new APIs defined in the Scala compiler.
3. sbt must implement all kinds of hackery to remain source-compatible with

all versions of the Scala compiler and support new features.

To circumvent this problem, a new mechanism that allows sbt to fetch the
version of the sources for the compiler interface that are the most specific for
the Scala version in use has been implemented in sbt.

For instance, for a project that is compiled using Scala 2.11.8-M2, sbt will look
for the following version of the sources for the compiler interface, in this order:

1. 2.11.8-M2
2. 2.11.8
3. 2.11
4. The default sources.

This new mechanism allows both the Scala compiler and sbt to move forward
and enjoy new APIs while being certain than users of older versions of Scala
will still be able to use sbt.

Finally, another advantage of this technique is that it relies on Ivy to retrieve
the sources of the compiler bridge, but can be easily ported for use with Maven,
which is the distribution mechanism that the sbt maintainers would like to use
to distribute sbt’s modules.

sbt Launcher

The sbt launcher provides a generic container that can load and run programs
resolved using the Ivy dependency manager. Sbt uses this as its own deployment
mechanism.

The code is hosted at sbt/launcher.

Getting Started with the sbt launcher

The sbt launcher provides two parts:

1. An interface for launched applications to interact with the launcher code
2. A minimal sbt-launch.jar that can launch applications by resolving them

through ivy.

The sbt launcher component is a self-contained jar that boots a Scala application
or server without Scala or the application already existing on the system. The

494

https://github.com/sbt/sbt/blob/0.13/compile/interface/src/main/scala/xsbt/Compat.scala#L6
https://github.com/sbt/launcher

only prerequisites are the launcher jar itself, an optional configuration file, and
a Java runtime version 1.6 or greater.

Overview

A user downloads the launcher jar and creates a script to run it. In this docu-
mentation, the script will be assumed to be called launch. For Unix, the script
would look like: java -jar sbt-launcher.jar "$@"

The user can now launch servers and applications which provide sbt launcher
configuration.

Alternatively, you can repackage the launcher with a launcher configuration
file. For example, sbt/sbt pulls in the raw JAR and injects the appropriate
boot.properties files for sbt.

Applications

To launch an application, the user then downloads the configuration file for the
application (call it my.app.configuration) and creates a script to launch it
(call it myapp):

launch @my.app.configuration "$@"

The user can then launch the application using myapp arg1 arg2 ...

More on launcher configuration can be found at Launcher Configuration

Servers

The sbt launcher can be used to launch and discover running servers on the
system. The launcher can be used to launch servers similarly to applications.
However, if desired, the launcher can also be used to ensure that only one
instance of a server is running at time. This is done by having clients always
use the launcher as a service locator.

To discover where a server is running (or launch it if it is not run-
ning), the user downloads the configuration file for the server (call it
my.server.configuration) and creates a script to discover the server (call it
find-myserver):

launch --locate @my.server.properties.

This command will print out one string, the URI at which to reach the server,
e.g. sbt://127.0.0.1:65501. Clients should use the IP/port to connect to to
the server and initiate their connection.

When using the locate feature, the sbt launcher makes the following restrictions
to servers:

495

https://github.com/sbt/sbt
https://github.com/sbt/sbt/blob/0.13/project/SbtLauncherPlugin.scala#L24-L34
https://github.com/sbt/sbt/blob/0.13/project/SbtLauncherPlugin.scala#L24-L34
Launcher-Configuration.html

• The Server must have a starting class that extends the xsbti.ServerMain
class

• The Server must have an entry point (URI) that clients can use to detect
the server

• The server must have defined a lock file which the launcher can use to
ensure that only one instance is running at a time

• The filesystem on which the lock file resides must support locking.
• The server must allow the launcher to open a socket against the port

without sending any data. This is used to check if a previous server is still
alive.

Resolving Applications/Servers

Like the launcher used to distribute sbt, the downloaded launcher jar will re-
trieve Scala and the application according to the provided configuration file. The
versions may be fixed or read from a different configuration file (the location
of which is also configurable). The location to which the Scala and application
jars are downloaded is configurable as well. The repositories searched are con-
figurable. Optional initialization of a properties file on launch is configurable.

Once the launcher has downloaded the necessary jars, it loads the applica-
tion/server and calls its entry point. The application is passed information
about how it was called: command line arguments, current working directory,
Scala version, and application ID (organization, name, version). In addition,
the application can ask the launcher to perform operations such as obtaining
the Scala jars and a ClassLoader for any version of Scala retrievable from the
repositories specified in the configuration file. It can request that other appli-
cations be downloaded and run. When the application completes, it can tell
the launcher to exit with a specific exit code or to reload the application with
a different version of Scala, a different version of the application, or different
arguments.

There are some other options for setup, such as putting the configuration file
inside the launcher jar and distributing that as a single download. The rest
of this documentation describes the details of configuring, writing, distributing,
and running the application.

Creating a Launched Application

This section shows how to make an application that is launched by this launcher.
First, declare a dependency on the launcher-interface. Do not declare a
dependency on the launcher itself. The launcher interface consists strictly of
Java interfaces in order to avoid binary incompatibility between the version
of Scala used to compile the launcher and the version used to compile your
application. The launcher interface class will be provided by the launcher, so it is

496

only a compile-time dependency. If you are building with sbt, your dependency
definition would be:

libraryDependencies += "org.scala-sbt" % "launcher-interface" % "1.0.0" % "provided"

resolvers += sbtResolver.value

Make the entry point to your class implement xsbti.AppMain. An example
that uses some of the information:

package com.acme.launcherapp

class Main extends xsbti.AppMain
{

def run(configuration: xsbti.AppConfiguration) =
{

// get the version of Scala used to launch the application
val scalaVersion = configuration.provider.scalaProvider.version

// Print a message and the arguments to the application
println("Hello world! Running Scala " + scalaVersion)
configuration.arguments.foreach(println)

// demonstrate the ability to reboot the application into different versions of Scala
// and how to return the code to exit with
scalaVersion match
{

case "2.10.6" =>
new xsbti.Reboot {

def arguments = configuration.arguments
def baseDirectory = configuration.baseDirectory
def scalaVersion = "2.11.8"
def app = configuration.provider.id

}
case "2.11.8" => new Exit(1)
case _ => new Exit(0)

}
}
class Exit(val code: Int) extends xsbti.Exit

}

Next, define a configuration file for the launcher. For the above class, it might
look like:

[scala]
version: 2.11.8

[app]
org: com.acme

497

name: launcherapp
version: 0.0.1
class: com.acme.launcherapp.Main
cross-versioned: true

[repositories]
local
maven-central

[boot]
directory: ${user.home}/.myapp/boot

Then, publishLocal or +publishLocal the application in sbt’s shell to make
it available. For more information, see Launcher Configuration.

Running an Application

As mentioned above, there are a few options to actually run the application.
The first involves providing a modified jar for download. The second two require
providing a configuration file for download.

• Replace the /sbt/sbt.boot.properties file in the launcher jar and dis-
tribute the modified jar. The user would need a script to run java -jar
your-launcher.jar arg1 arg2

• The user downloads the launcher jar and you provide the configuration
file.

– The user needs to run java -Dsbt.boot.properties=your.boot.properties
-jar launcher.jar.

– The user already has a script to run the launcher (call it
‘launch’). The user needs to run launch @your.boot.properties
your-arg-1 your-arg-2

Execution

Let’s review what’s happening when the launcher starts your application.

On startup, the launcher searches for its configuration and then parses it. Once
the final configuration is resolved, the launcher proceeds to obtain the necessary
jars to launch the application. The boot.directory property is used as a base
directory to retrieve jars to. Locking is done on the directory, so it can be shared
system-wide. The launcher retrieves the requested version of Scala to

${boot.directory}/${scala.version}/lib/

If this directory already exists, the launcher takes a shortcut for startup perfor-
mance and assumes that the jars have already been downloaded. If the directory
does not exist, the launcher uses Apache Ivy to resolve and retrieve the jars. A
similar process occurs for the application itself. It and its dependencies are
retrieved to

498

Launcher-Configuration.html

${boot.directory}/${scala.version}/${app.org}/${app.name}/.

Once all required code is downloaded, the class loaders are set up. The launcher
creates a class loader for the requested version of Scala. It then creates a child
class loader containing the jars for the requested app.components and with the
paths specified in app.resources. An application that does not use components
will have all of its jars in this class loader.

The main class for the application is then instantiated. It must be a public class
with a public no-argument constructor and must conform to xsbti.AppMain.
The run method is invoked and execution passes to the application. The argu-
ment to the ‘run’ method provides configuration information and a callback to
obtain a class loader for any version of Scala that can be obtained from a repos-
itory in [repositories]. The return value of the run method determines what
is done after the application executes. It can specify that the launcher should
restart the application or that it should exit with the provided exit code.

Sbt Launcher Architecture

The sbt launcher is a mechanism whereby modules can be loaded from Ivy and
executed within a JVM. It abstracts the mechanism of grabbing and caching
jars, allowing users to focus on what application they want, and control its
versions.

The launcher’s primary goal is to take configuration for applications— mostly
Ivy coordinates and a main class—and start the application. The launcher
resolves the Ivy module, caches the required runtime jars, and starts the appli-
cation.

The sbt launcher provides the application with the means to load a different
application when it completes, exit normally, or load additional applications
from inside another.

The sbt launcher provides these core functions:

• Module Resolution
• Classloader Caching and Isolation
• File Locking
• Service Discovery and Isolation

Module Resolution

The primary purpose of the sbt launcher is to resolve applications and run them.
This is done through the [app] configuration section. See launcher configuration
for more information on how to configure module resolution.

Module resolution is performed using the Ivy dependency management library.
This library supports loading artifacts from Maven repositories as well.

499

Launcher-Configuration.html

Classloader Caching and Isolation

The sbt launcher’s classloading structure is different than just starting an ap-
plication in the standard Java mechanism. Every application loaded by the
launcher is given its own classloader. This classloader is a child of the Scala
classloader used by the application. The Scala classloader can see all of the
xsbti.* classes from the launcher itself.

Here’s an example classloader layout from an sbt-launched application.

image

In this diagram, three different applications were loaded. Two of these use the
same version of Scala (2.9.2). In this case, sbt can share the same classloader for
these applications. This has the benefit that any JIT optimisations performed
on Scala classes can be re-used between applications thanks to the shared class-
loader.

Caching

The sbt launcher creates a secondary cache on top of Ivy’s own cache. This helps
isolate applications from errors resulting from unstable revisions, like -SNAPSHOT.
For any launched application, the launcher creates a directory to store all its
jars. Here’s an example layout.

Locking

In addition to providing a secondary cache, the launcher also provides a mech-
anism of safely doing file-based locks. This is used in two places directly by the
launcher:

1. Locking the boot directory.
2. Ensuring located servers have at most one active process.

This feature requires a filesystem which supports locking. It is exposed via the
xsbti.GlobalLock interface.

Note: This is both a thread and file lock. Not only are we limiting access to a
single process, but also a single thread within that process.

Service Discovery and Isolation

The launcher also provides a mechanism to ensure that only one instance of a
server is running, while dynamically starting it when a client requests. This is
done through the --locate flag on the launcher. When the launcher is started
with the --locate flag it will do the following:

500

1. Lock on the configured server lock file.
2. Read the server properties to find the URI of the previous server.
3. If the port is still listening to connection requests, print this URI on the

command line.
4. If the port is not listening, start a new server and write the URI on the

command line.
5. Release all locks and shutdown.

The configured server.lock file is thus used to prevent multiple servers from
running. sbt itself uses this to prevent more than one server running on any given
project directory by configuring server.lock to be ${user.dir}/.sbtserver.

sbt Launcher Configuration

The launcher may be configured in one of the following ways in increasing order
of precedence:

• Replace the /sbt/sbt.boot.properties file in the launcher jar
• Put a configuration file named sbt.boot.properties on the classpath.

Put it in the classpath root without the /sbt prefix.
• Specify the location of an alternate configuration on the command line,

either as a path or an absolute URI. This can be done by either specifying
the location as the system property sbt.boot.properties or as the first
argument to the launcher prefixed by @. The system property has lower
precedence. Resolution of a relative path is first attempted against the
current working directory, then against the user’s home directory, and
then against the directory containing the launcher jar.

An error is generated if none of these attempts succeed.

Example

The default configuration file for sbt as an application looks like:

[scala]
version: ${sbt.scala.version-auto}

[app]
org: ${sbt.organization-org.scala-sbt}
name: sbt
version: ${sbt.version-read(sbt.version)[0.13.5]}
class: ${sbt.main.class-sbt.xMain}
components: xsbti,extra
cross-versioned: ${sbt.cross.versioned-false}

[repositories]

501

local
typesafe-ivy-releases: https://repo.typesafe.com/typesafe/ivy-releases/, [organization]/[module]/[revision]/[type]s/[artifact](-[classifier]).[ext], bootOnly
maven-central
sonatype-snapshots: https://oss.sonatype.org/content/repositories/snapshots

[boot]
directory: ${sbt.boot.directory-${sbt.global.base-${user.home}/.sbt}/boot/}

[ivy]
ivy-home: ${sbt.ivy.home-${user.home}/.ivy2/}
checksums: ${sbt.checksums-sha1,md5}
override-build-repos: ${sbt.override.build.repos-false}
repository-config: ${sbt.repository.config-${sbt.global.base-${user.home}/.sbt}/repositories}

Let’s look at all the launcher configuration sections in detail:

1. Scala Configuration

The [scala] section is used to configure the version of Scala. It has one prop-
erty:

• version - The version of Scala an application uses, or auto if the appli-
cation is not cross-versioned.

• classifiers - The (optional) list of additional Scala artifacts to resolve,
e.g. sources.

2. Application Identification

The [app] section configures how the launcher will look for your application
using the Ivy dependency manager. It consists of the following properties:

• org - The organization associated with the Ivy module. (groupId in
Maven vernacular)

• name - The name of the Ivy module. (artifactId in Maven vernacular)
• version - The revision of the Ivy module.
• class - The name of the “entry point” into the application. An entry

point must be a class which meets one of the following criteria
– Extends the xsbti.AppMain interface.
– Extends the xsbti.ServerMain interfaces.
– Contains a method with the signature static void main(String[])
– Contains a method with the signature static int main(String[])
– Contains a method with the signature static xsbti.Exit

main(String[])
• components - An optional list of additional components that Ivy should

resolve.
• cross-versioned - An optional string denoting how this application

is published. If app.cross-versioned is binary, the resolved module ID is

502

{app.name+'_'+CrossVersion.binaryScalaVersion(scala.version)}.
If app.cross-versioned is true or full, the resolved module ID is
{app.name+'_'+scala.version}. The scala.version property must
be specified and cannot be auto when cross-versioned.

• resources - An optional list of jar files that should be added to the
application’s classpath.

• classifiers - An optional list of additional classifiers that should be
resolved with this application, e.g. sources.

3. Repositories Section

The [repositories] section configures where and how Ivy will look for your
application. Each line denotes a repository where Ivy will look.

Note: This section configured the default location where Ivy will look, but this
can be overridden via user configuration.

There are several built-in strings that can be used for common repositories:

• local - the local Ivy repository ~/.ivy2/local.
• maven-local - The local Maven repository ~/.m2/repository.
• maven-central - The Maven Central repository repo1.maven.org.

Besides built in repositories, other repositories can be configured using the fol-
lowing syntax:

name: url(, pattern)(,bootOnly)(,descriptorOptional)(,skipConsistencyCheck)(,allowInsecureProtocol)

The name property is an identifier which Ivy uses to cache modules resolved
from this location. The name should be unique across all repositories.

The url property is the base url where Ivy should look for modules.

The pattern property is an optional specification of how Ivy should look for
modules. By default, the launcher assumes repositories are in the maven style
format.

The bootOnly string is used to tell Ivy to only use this repository during startup.
i.e. To find sbt’s own JARs and the JARs of any plugins. Repositories with the
bootOnly string will not be used for build-time dependency resolution.

The skipConsistencyCheck string is used to tell Ivy not to validate checksums
and signatures of files it resolves.

The allowInsecureProtocol string tells SBT not to output a warning about
this repository being http://. Please think carefully before using HTTP repos-
itories as they can present a significant security risk.

4. The Boot section

503

https://github.com/sbt/sbt/issues/4905

The [boot] section is used to configure where the sbt launcher will store its
cache and configuration information. It consists of the following properties:

• directory - The directory defined here is used to store all cached JARs
resolved launcher.

• properties - (optional) A properties file to use for any read variables.

5. The Ivy section

The [ivy] section is used to configure the Ivy dependency manager for resolving
applications. It consists of the following properties:

• ivy-home - The home directory for Ivy. This determines where the ivy-
local repository is located, and also where the Ivy cache is stored. Defaults
to ~/.ivy2

• checksums - The comma-separated list of checksums that Ivy should use
to verify artifacts have correctly resolved, e.g. md5 or sha1.

• override-build-repos - If this is set, then the isOverrideRepositories
method on xsbti.Launcher interface will return its value. The use of
this method is application-specific, but in the case of sbt denotes that the
configuration of repositories in the launcher should override those used by
any build. Applications should respect this convention if they can.

• repository-config - This specifies a configuration location where Ivy
repositories can also be configured. If this file exists, then its contents
override the [repositories] section.

6. The Server Section

When using the --locate feature of the launcher, this section configures how a
server is started. It consists of the following properties:

• lock - The file that controls access to the running server. This file will
contain the active port used by a server and must be located on a filesystem
that supports locking.

• jvmargs - A file that contains line-separated JVM arguments that were
used when starting the server.

• jvmprops - The location of a properties file that will define override prop-
erties in the server. All properties defined in this file will be set as -D Java
properties.

Variable Substitution

Property values may include variable substitutions. A variable substitution has
one of these forms:

• ${variable.name}
• ${variable.name-default}

504

where variable.name is the name of a system property. If a system property
by that name exists, the value is substituted. If it does not exists and a default
is specified, the default is substituted after recursively substituting variables in
it. If the system property does not exist and no default is specified, the original
string is not substituted.

There is also a special variable substitution:

read(property.name)[default]

This will look in the file configured by boot.properties for a value. If there
is no boot.properties file configured, or the property does not exist, then the
default value is chosen.

Syntax

The configuration file is line-based, read as UTF-8 encoded, and defined by the
following grammar. 'nl' is a newline or end of file and 'text' is plain text
without newlines or the surrounding delimiters (such as parentheses or square
brackets):

configuration: scala app repositories boot log appProperties
scala: "[" "scala" "]" nl version nl classifiers nl
app: "[" "app" "]" nl org nl name nl version nl components nl class nl crossVersioned nl resources nl classifiers nl
repositories: "[" "repositories" "]" nl (repository nl)*
boot: "[" "boot" "]" nl directory nl bootProperties nl search nl promptCreate nl promptFill nl quickOption nl
log: "[" "log" "]" nl logLevel nl
appProperties: "[" "app-properties" "]" nl (property nl)*
ivy: "[" "ivy" "]" nl homeDirectory nl checksums nl overrideRepos nl repoConfig nl
directory: "directory" ":" path
bootProperties: "properties" ":" path
search: "search" ":" ("none" | "nearest" | "root-first" | "only") ("," path)*
logLevel: "level" ":" ("debug" | "info" | "warn" | "error")
promptCreate: "prompt-create" ":" label
promptFill: "prompt-fill" ":" boolean
quickOption: "quick-option" ":" boolean
version: "version" ":" versionSpecification
versionSpecification: readProperty | fixedVersion
readProperty: "read" "(" propertyName ")" "[" default "]"
fixedVersion: text
classifiers: "classifiers" ":" text ("," text)*
homeDirectory: "ivy-home" ":" path
checksums: "checksums" ":" checksum ("," checksum)*
overrideRepos: "override-build-repos" ":" boolean
repoConfig: "repository-config" ":" path
org: "org" ":" text
name: "name" ":" text

505

class: "class" ":" text
components: "components" ":" component ("," component)*
crossVersioned: "cross-versioned" ":" ("true" | "false" | "none" | "binary" | "full")
resources: "resources" ":" path ("," path)*
repository: (predefinedRepository | customRepository) nl
predefinedRepository: "local" | "maven-local" | "maven-central"
customRepository: label ":" url [["," ivyPattern] ["," artifactPattern] [", mavenCompatible"] [", bootOnly"]]
property: label ":" propertyDefinition ("," propertyDefinition)*
propertyDefinition: mode "=" (set | prompt)
mode: "quick" | "new" | "fill"
set: "set" "(" value ")"
prompt: "prompt" "(" label ")" ("[" default "]")?
boolean: "true" | "false"
nl: "\r\n" | "\n" | "\r"
path: text
propertyName: text
label: text
default: text
checksum: text
ivyPattern: text
artifactPattern: text
url: text
component: text

Notes

Here are some more docs that used to be part of Developer Guide.

Core Principles

This document details the core principles overarching sbt’s design and code style.
sbt’s core principles can be stated quite simply:

1. Everything should have a Type, enforced as much as is practical.
2. Dependencies should be explicit.
3. Once learned, a concept should hold throughout all parts of sbt.
4. Parallel is the default.

With these principles in mind, let’s walk through the core design of sbt.

Introduction to build state

This is the first piece you hit when starting sbt. sbt’s command engine is the
means by which it processes user requests using the build state. The command

506

engine is essentially a means of applying state transformations on the build
state, to execute user requests.

In sbt, commands are functions that take the current build state (sbt.State)
and produce the next state. In other words, they are essentially functions of
sbt.State => sbt.State. However, in reality, Commands are actually string
processors which take some string input and act on it, returning the next build
state.

So, the entirety of sbt is driven off the sbt.State class. Since this class needs
to be resilient in the face of custom code and plugins, it needs a mechanism
to store the state from any potential client. In dynamic languages, this can be
done directly on objects.

A naive approach in Scala is to use a Map<String,Any>. However, this violates
tenant #1: Everything should have a Type. So, sbt defines a new type of map
called an AttributeMap. An AttributeMap is a key-value storage mechanism
where keys are both strings and expected Types for their value.

Here is what the type-safe AttributeKey key looks like :

sealed trait AttributeKey[T] { /** The label is the identifier for the key and is
camelCase by convention. */ def label: String /** The runtime evidence for T
*/ def manifest: Manifest[T] }

These keys store both a label (string) and some runtime type information
(manifest). To put or get something on the AttributeMap, we first need to con-
struct one of these keys. Let’s look at the basic definition of the AttributeMap:

trait AttributeMap {
/** Gets the value of type ``T`` associated with the key ``k`` or ``None`` if no value is associated.
* If a key with the same label but a different type is defined, this method will return ``None``. */
def get[T](k: AttributeKey[T]): Option[T]

/** Adds the mapping ``k -> value`` to this map, replacing any existing mapping for ``k``.
* Any mappings for keys with the same label but different types are unaffected. */
def put[T](k: AttributeKey[T], value: T): AttributeMap

}

Now that there’s a definition of what build state is, there needs to be a way to
dynamically construct it. In sbt, this is done through the Setting[_] sequence.

Settings Architecture

A Setting represents the means of constructing the value of one particular
AttributeKey[_] in the AttributeMap of build state. A setting consists of
two pieces:

1. The AttributeKey[T] where the value of the setting should be assigned.

507

2. An Initialize[T] object which is able to construct the value for this
setting.

sbt’s initialization time is basically just taking a sequence of these Setting[_]
objects and running their initialization objects and then storing the value into
the AttributeMap. This means overwriting an existing value at a key is as easy
as appending a Setting[_] to the end of the sequence which does so.

Where it gets interesting is that Initialize[T] can depend on other
AttributeKey[_]s in the build state. Each Initialize[_] can pull values
from any AttributeKey[_] in the build state’s AttributeMap to compute its
value. sbt ensures a few things when it comes to Initialize[_] dependencies:

1. There can be no circular dependencies
2. If one Initialize[_] depends on another Initialize[_] key, then all

associated Initialize[_] blocks for that key must have run before we
load the value.

Let’s look at what gets stored for the setting :

normalizedName := normalize(name.value)

image

Here, a Setting[_] is constructed that understands it depends on the value in
the name AttributeKey. Its initialize block first grabs the value of the name
key, then runs the function normalize on it to compute its value.

This represents the core mechanism of how to construct sbt’s build state. Con-
ceptually, at some point we have a graph of dependencies and initialization
functions which we can use to construct the first build state. Once this is com-
pleted, we can then start to process user requests.

Task Architecture

The next layer in sbt is around these user requests, or tasks. When a user
configures a build, they are defining a set of repeatable tasks that they can
run on their project. Things like compile or test. These tasks also have a
dependency graph, where e.g. the test task requires that compile has run
before it can successfully execute.

sbt defines a class Task[T]. The T type parameter represents the type of data
returned by a task. Remember the tenets of sbt? “All things have types” and
“Dependencies are explicit” both hold true for tasks. sbt promotes a style of
task dependencies that is closer to functional programming: return data for
your users rather than using shared mutable state.

Most build tools communicate over the filesystem, and indeed by necessity sbt
does some of this. However, for stable parallelization it is far better to keep
tasks isolated on the filesystem and communicate directly through types.

508

Similarly to how a Setting[_] stores both dependencies and an initialization
function, a Task[_] stores both its Task[_]dependencies and its behavior (a
function).

TODO - More on Task[_]

TODO - Transition into InputTask[_], rehash Command

TODO - Transition into Scope.

Settings Core

This page describes the core settings engine a bit. This may be useful for using it
outside of sbt. It may also be useful for understanding how sbt works internally.

The documentation is comprised of two parts. The first part shows an example
settings system built on top of the settings engine. The second part comments
on how sbt’s settings system is built on top of the settings engine. This may help
illuminate what exactly the core settings engine provides and what is needed to
build something like the sbt settings system.

Example

Setting up

To run this example, first create a new project with the following build.sbt file:

libraryDependencies += "org.scala-sbt" %% "collections" % sbtVersion.value

resolvers += sbtResolver.value

Then, put the following examples in source files SettingsExample.scala and
SettingsUsage.scala. Finally, run sbt and enter the REPL using console.
To see the output described below, enter SettingsUsage.

Example Settings System

The first part of the example defines the custom settings system. There are
three main parts:

1. Define the Scope type.
2. Define a function that converts that Scope (plus an AttributeKey) to a

String.
3. Define a delegation function that defines the sequence of Scopes in which

to look up a value.

There is also a fourth, but its usage is likely to be specific to sbt at this time.
The example uses a trivial implementation for this part.

509

SettingsExample.scala:

import sbt._

/** Define our settings system */

// A basic scope indexed by an integer.
final case class Scope(index: Int)

// Extend the Init trait.
// (It is done this way because the Scope type parameter is used everywhere in Init.
// Lots of type constructors would become binary, which as you may know requires lots of type lambdas
// when you want a type function with only one parameter.
// That would be a general pain.)
object SettingsExample extends Init[Scope]
{

// Provides a way of showing a Scope+AttributeKey[_]
val showFullKey: Show[ScopedKey[_]] = new Show[ScopedKey[_]] {

def apply(key: ScopedKey[_]) = key.scope.index + "/" + key.key.label
}

// A sample delegation function that delegates to a Scope with a lower index.
val delegates: Scope => Seq[Scope] = { case s @ Scope(index) =>

s +: (if(index <= 0) Nil else delegates(Scope(index-1)))
}

// Not using this feature in this example.
val scopeLocal: ScopeLocal = _ => Nil

// These three functions + a scope (here, Scope) are sufficient for defining our settings system.
}

Example Usage

This part shows how to use the system we just defined. The end result
is a Settings[Scope] value. This type is basically a mapping Scope ->
AttributeKey[T] -> Option[T]. See the Settings API documentation for
details.

SettingsUsage.scala:

/** Usage Example **/

import sbt._
import SettingsExample._
import Types._

510

../api/sbt/internal/util/Settings.html

object SettingsUsage {

// Define some keys
val a = AttributeKey[Int]("a")
val b = AttributeKey[Int]("b")

// Scope these keys
val a3 = ScopedKey(Scope(3), a)
val a4 = ScopedKey(Scope(4), a)
val a5 = ScopedKey(Scope(5), a)

val b4 = ScopedKey(Scope(4), b)

// Define some settings
val mySettings: Seq[Setting[_]] = Seq(

setting(a3, value(3)),
setting(b4, map(a4)(_ * 3)),
update(a5)(_ + 1)

)

// "compiles" and applies the settings.
// This can be split into multiple steps to access intermediate results if desired.
// The 'inspect' command operates on the output of 'compile', for example.

val applied: Settings[Scope] = make(mySettings)(delegates, scopeLocal, showFullKey)

// Show results.
for(i <- 0 to 5; k <- Seq(a, b)) {

println(k.label + i + " = " + applied.get(Scope(i), k))
}

}

This produces the following output when run:

a0 = None
b0 = None
a1 = None
b1 = None
a2 = None
b2 = None
a3 = Some(3)
b3 = None
a4 = Some(3)
b4 = Some(9)
a5 = Some(4)
b5 = Some(9)

• For the None results, we never defined the value and there was no value

511

to delegate to.
• For a3, we explicitly defined it to be 3.
• a4 wasn’t defined, so it delegates to a3 according to our delegates func-

tion.
• b4 gets the value for a4 (which delegates to a3, so it is 3) and multiplies

by 3
• a5 is defined as the previous value of a5 + 1 and since no previous value

of a5 was defined, it delegates to a4, resulting in 3+1=4.
• b5 isn’t defined explicitly, so it delegates to b4 and is therefore equal to 9

as well

sbt Settings Discussion

Scopes

sbt defines a more complicated scope than the one shown here for the standard
usage of settings in a build. This scope has four components: the project axis,
the configuration axis, the task axis, and the extra axis. Each component may be
Zero (no specific value), This (current context), or Select (containing a specific
value). sbt resolves This_ to either Zero or Select depending on the context.

For example, in a project, a This project axis becomes a Select referring to the
defining project. All other axes that are This are translated to Zero. Functions
like inConfig and inTask transform This into a Select for a specific value. For
example, inConfig(Compile)(someSettings) translates the configuration axis
for all settings in someSettings to be Select(Compile) if the axis value is This.

So, from the example and from sbt’s scopes, you can see that the core settings
engine does not impose much on the structure of a scope. All it requires is a
delegates function Scope => Seq[Scope] and a display function. You can
choose a scope type that makes sense for your situation.

Constructing settings

The app, value, update, and related methods are the core methods for con-
structing settings. This example obviously looks rather different from sbt’s in-
terface because these methods are not typically used directly, but are wrapped
in a higher-level abstraction.

With the core settings engine, you work with HLists to access other settings.
In sbt’s higher-level system, there are wrappers around HList for TupleN and
FunctionN for N = 1-9 (except Tuple1 isn’t actually used). When working
with arbitrary arity, it is useful to make these wrappers at the highest level
possible. This is because once wrappers are defined, code must be duplicated
for every N. By making the wrappers at the top-level, this requires only one
level of duplication.

512

../api/sbt/Zero$.html
../api/sbt/This$.html
../api/sbt/Select.html
../api/sbt/Zero$.html
../api/sbt/Select.html
../api/sbt/This$.html
../api/sbt/Select.html
../api/sbt/This$.html
../api/sbt/Zero$.html
../api/sbt/Select.html
../api/sbt/This$.html

Additionally, sbt uniformly integrates its task engine into the settings system.
The underlying settings engine has no notion of tasks. This is why sbt uses a
SettingKey type and a TaskKey type. Methods on an underlying TaskKey[T]
are basically translated to operating on an underlying SettingKey[Task[T]]
(and they both wrap an underlying AttributeKey).

For example, a := 3 for a SettingKey a will very roughly translate to
setting(a, value(3)). For a TaskKey a, it will roughly translate to
setting(a, value(task { 3 })). See main/Structure.scala for details.

Settings definitions

sbt also provides a way to define these settings in a file (build.sbt and
Build.scala). This is done for build.sbt using basic parsing and then pass-
ing the resulting chunks of code to compile/Eval.scala. For all definitions,
sbt manages the classpaths and recompilation process to obtain the settings.
It also provides a way for users to define project, task, and configuration
delegation, which ends up being used by the delegates function.

Setting Initialization

This page outlines the mechanisms by which sbt loads settings for a particular
build, including the hooks where users can control the ordering of everything.

As stated elsewhere, sbt constructs its initialization graph and task graph via
Setting[_] objects. A setting is something which can take the values stored at
other Keys in the build state, and generates a new value for a particular build
key. sbt converts all registered Setting[_] objects into a giant linear sequence
and compiles them into a task graph. This task graph is then used to execute
your build.

All of sbt’s loading semantics are contained within the Load.scala file. It is
approximately the following:

image

The blue circles represent actions happening when sbt loads a project. We can
see that sbt performs the following actions in load:

1. Compile the user-level project (~/.sbt/<version>/)

a. Load any plugins defined by this project (~/.sbt/<version>/plugins/*.sbt
and ~/.sbt/<version>/plugins/project/*.scala)

b. Load all settings defined (~/.sbt/<version>/*.sbt and ~/.sbt/<version>/plugins/*.scala)

2. Compile the current project (<working-directory/project)

a. Load all defined plugins (project/plugins.sbt and project/project/*.scala)
b. Load/Compile the project (project/*.scala)

513

https://github.com/sbt/sbt/blob/develop/main-settings/src/main/scala/sbt/Structure.scala
https://github.com/sbt/sbt/blob/develop/main/src/main/scala/sbt/internal/Load.scala

3. Load project *.sbt files (build.sbt and friends).

Each of these loads defines several sequences of settings. The diagram shows
the two most important:

• buildSettings - These are settings defined to be in ThisBuild or di-
rectly against the Build object. They are initialized once for the build.
You can add these, e.g. in build.sbt file:

ThisBuild / foo := "hi"

• projectSettings - These are settings specific to a project. They are
specific to a particular subproject in the build. A plugin may be con-
tributing its settings to more than one project, in which case the values
are duplicated for each project. You add project specific settings, eg. in
project/build.scala:

lazy val root = (project in file(".")).settings(...)

After loading/compiling all the build definitions, sbt has a series of
Seq[Setting[_]] that it must order. As shown in the diagram, the
default inclusion order for sbt is:

1. All AutoPlugin settings
2. All settings defined in the user directory (~/.sbt/<version>/*.sbt)
3. All local configurations (build.sbt)

Creating Command Line Applications Using sbt

There are several components of sbt that may be used to create a command
line application. The launcher and the command system are the two main ones
illustrated here.

As described on the launcher page, a launched application implements the xs-
bti.AppMain interface and defines a brief configuration file that users pass to
the launcher to run the application. To use the command system, an applica-
tion sets up a State instance that provides command implementations and the
initial commands to run. A minimal hello world example is given below.

Hello World Example

There are three files in this example:

1. build.sbt
2. Main.scala
3. hello.build.properties

To try out this example:

514

Sbt-Launcher.html
Commands.html
Sbt-Launcher.html
Build-State.html
Commands.html

1. Put the first two files in a new directory
2. In sbt’s shell run publishLocal in that directory
3. Run sbt @path/to/hello.build.properties to run the application.

Like for sbt itself, you can specify commands from the command line (batch
mode) or run them at an prompt (interactive mode).

Build Definition: build.sbt

The build.sbt file should define the standard settings: name, version, and organi-
zation. To use the sbt command system, a dependency on the command module
is needed. To use the task system, add a dependency on the task-system
module as well.

organization := "org.example"

name := "hello"

version := "0.1-SNAPSHOT"

libraryDependencies += "org.scala-sbt" % "command" % "0.12.0"

Application: Main.scala

The application itself is defined by implementing xsbti.AppMain. The basic
steps are

1. Provide command definitions. These are the commands that are available
for users to run.

2. Define initial commands. These are the commands that are initially sched-
uled to run. For example, an application will typically add anything speci-
fied on the command line (what sbt calls batch mode) and if no commands
are defined, enter interactive mode by running the ‘shell’ command.

3. Set up logging. The default setup in the example rotates the log file after
each user interaction and sends brief logging to the console and verbose
logging to the log file.

package org.example

import sbt._
import java.io.{File, PrintWriter}

final class Main extends xsbti.AppMain
{

/** Defines the entry point for the application.
* The call to `initialState` sets up the application.
* The call to runLogged starts command processing. */

515

../api/xsbti/AppMain.html

def run(configuration: xsbti.AppConfiguration): xsbti.MainResult =
MainLoop.runLogged(initialState(configuration))

/** Sets up the application by constructing an initial State instance with the supported commands
* and initial commands to run. See the State API documentation for details. */
def initialState(configuration: xsbti.AppConfiguration): State =
{

val commandDefinitions = hello +: BasicCommands.allBasicCommands
val commandsToRun = Hello +: "iflast shell" +: configuration.arguments.map(_.trim)
State(configuration, commandDefinitions, Set.empty, None, commandsToRun, State.newHistory,

AttributeMap.empty, initialGlobalLogging, State.Continue)
}

// defines an example command. see the Commands page for details.
val Hello = "hello"
val hello = Command.command(Hello) { s =>

s.log.info("Hello!")
s

}

/** Configures logging to log to a temporary backing file as well as to the console.
* An application would need to do more here to customize the logging level and
* provide access to the backing file (like sbt's last command and logLevel setting).*/
def initialGlobalLogging: GlobalLogging =

GlobalLogging.initial(MainLogging.globalDefault _, File.createTempFile("hello", "log"))
}

Launcher configuration file: hello.build.properties

The launcher needs a configuration file in order to retrieve and run an applica-
tion. hello.build.properties:

[scala]
version: 2.9.1

[app]
org: org.example
name: hello
version: 0.1-SNAPSHOT
class: org.example.Main
components: xsbti
cross-versioned: true

[repositories]
local
maven-central

516

typesafe-ivy-releases: https://repo.typesafe.com/typesafe/ivy-releases/, [organization]/[module]/[revision]/[type]s/[artifact](-[classifier]).[ext]

out: Archive.html

Archived pages

Hello, World

This page assumes you’ve installed sbt 0.13.13 or later.

sbt new command

If you’re using sbt 0.13.13 or later, you can use sbt new command to quickly
setup a simple Hello world build. Type the following command to the terminal.

$ sbt new sbt/scala-seed.g8
....
Minimum Scala build.

name [My Something Project]: hello

Template applied in ./hello

When prompted for the project name, type hello.

This will create a new project under a directory named hello.

Running your app

Now from inside the hello directory, start sbt and type run at the sbt shell.
On Linux or OS X the commands might look like this:

$ cd hello
$ sbt
...
> run
...
[info] Compiling 1 Scala source to /xxx/hello/target/scala-2.12/classes...
[info] Running example.Hello
hello

We will see more tasks later.

517

Setup.html
Running.html

Exiting sbt shell

To leave sbt shell, type exit or use Ctrl+D (Unix) or Ctrl+Z (Windows).

> exit

Build definition

The build definition goes in a file called build.sbt, located in the project’s base
directory. You can take a look at the file, but don’t worry if the details of this
build file aren’t clear yet. In .sbt build definition you’ll learn more about how
to write a build.sbt file.

518

Basic-Def.html

	Preface
	Install
	Getting Started
	Features of sbt
	Also

	Getting Started with sbt
	Installing sbt
	Tips and Notes

	Installing sbt on macOS
	Install sbt with cs setup
	Install JDK
	Installing from a universal package
	Installing from a third-party package

	Installing sbt on Windows
	Install sbt with cs setup
	Install JDK
	Installing from a universal package
	Windows installer
	Installing from a third-party package

	Installing sbt on Linux
	Install sbt with cs setup
	Installing from SDKMAN
	Install JDK
	Installing from a universal package
	Ubuntu and other Debian-based distributions
	Red Hat Enterprise Linux and other RPM-based distributions
	Gentoo

	sbt by example
	Create a minimum sbt build
	Start sbt shell
	Exit sbt shell
	Compile a project
	Recompile on code change
	Create a source file
	Run a previous command
	Getting help
	Run your app
	Set ThisBuild / scalaVersion from sbt shell
	Save the session to build.sbt
	Name your project
	Reload the build
	Add toolkit-test to libraryDependencies
	Run tests
	Run incremental tests continuously
	Write a test
	Make the test pass
	Add a library dependency
	Use Scala REPL
	Make a subproject
	List all subprojects
	Compile the subproject
	Add toolkit-test to the subproject
	Broadcast commands
	Make hello depend on helloCore
	Parse JSON using uJson
	Add sbt-native-packager plugin
	Reload and create a .zip distribution
	Dockerize your app
	Set the version
	Switch scalaVersion temporarily
	Inspect the dist task
	Batch mode
	sbt new command
	Credits

	Directory structure
	Base directory
	Source code
	sbt build definition files
	Build support files
	Build products
	Configuring version control

	Running
	sbt shell
	Batch mode
	Continuous build and test
	Common commands
	Tab completion
	sbt shell history

	IDE Integration
	Build definition
	Specifying the sbt version
	What is a build definition?
	How build.sbt defines settings
	Keys
	Defining tasks and settings
	Keys in sbt shell
	Imports in build.sbt
	Bare .sbt build definition
	Adding library dependencies

	Multi-project builds
	Multiple subprojects
	Dependencies
	Inter-project dependencies
	Default root project
	Navigating projects interactively
	Common code
	Appendix: Subproject build definition files

	Task graph
	Terminology
	Declaring dependency to other tasks
	Inlining .value calls
	What's the point of the build.sbt DSL?
	Summary

	Scopes
	The whole story about keys
	Scope axes
	Referring to scopes in a build definition
	Referring to scoped keys from the sbt shell
	Examples of scoped key notation in the sbt shell
	Inspecting scopes
	When to specify a scope
	Build-level settings
	Scope delegation

	Appending values
	Appending to previous values: += and ++=
	Appending with dependencies: += and ++=

	Scope delegation (.value lookup)
	Scope delegation rules
	Rule 1: Scope axis precedence
	Rule 2: The task axis delegation
	Rule 3: The configuration axis search path
	Rule 4: The subproject axis search path
	Inspect command lists the delegates
	.value lookup vs dynamic dispatch

	Library dependencies
	Unmanaged dependencies
	Managed Dependencies

	Using plugins
	What is a plugin?
	Declaring a plugin
	Enabling and disabling auto plugins
	Global plugins
	Available Plugins

	Custom settings and tasks
	Defining a key
	Implementing a task
	Execution semantics of tasks
	Turn them into plugins

	Organizing the build
	sbt is recursive
	Tracking dependencies in one place
	When to use .scala files
	Defining auto plugins

	Getting Started summary
	sbt: The Core Concepts
	Advanced Notes

	Frequently Asked Questions
	Project Information
	Usage
	Build definitions
	Extending sbt
	Errors
	Dependency Management
	Miscellaneous

	General Information
	Credits
	Community Plugins
	sbt Organization
	Community Ivy Repository
	Cross building plugins from sbt 0.13
	Plugins available for sbt 1.0 (including RC-x)

	Community Repository Policy
	Bintray For Plugins
	Using Sonatype
	Sonatype setup
	sbt setup
	Optional steps

	Contributing to sbt
	Documentation

	Changes
	Migrating from sbt 0.13.x
	Migrating case class .copy(...)
	SbtPlugin
	sbt version specific source directory
	Migrating from sbt 0.12 style
	Migrating from the Build trait
	Migrating from Resolver.withDefaultResolvers

	sbt 1.4.x releases
	sbt 1.4.1
	sbt 1.4.0
	Build server protocol (BSP) support
	Native thin client
	ThisBuild / versionScheme
	VirtualFile + RemoteCache
	Build linting
	Conditional task
	Incremental build pipelining
	sbt-dependency-graph is in-sourced
	Fixes with compatibility implications
	Other updates
	Participation

	sbt 1.3.x releases
	sbt 1.3.0

	sbt 1.2.x releases
	sbt 1.2.1
	sbt 1.2.0

	sbt 1.1.x releases
	sbt 1.1.6
	sbt 1.1.5
	sbt 1.1.4
	Contributors
	sbt 1.1.2
	sbt 1.1.1
	sbt 1.1.0

	sbt 1.0.x releases
	sbt 1.0.4
	sbt 1.0.3
	sbt 1.0.2
	sbt 1.0.1
	sbt 1.0.0

	Detailed Topics
	Using sbt
	Command Line Reference
	Notes on the command line
	Project-level tasks
	Configuration-level tasks
	General commands
	Commands for managing the build definition

	Sbt runner arguments
	Console Project
	Description
	Accessing settings
	Evaluating tasks
	State

	Cross-building
	Introduction
	Publishing conventions
	Using cross-built libraries
	Cross building a project using sbt-projectmatrix
	Cross building a project statefully
	Change settings depending on the Scala version

	Interacting with the Configuration System
	Selecting commands, tasks, and settings
	Discovering Settings and Tasks

	Triggered Execution
	Compile
	Testing
	Running Multiple Commands
	Build sources
	Clearing the screen
	Configuration

	Script mode
	sbt Script runner

	sbt Server
	Configuration
	Language Server Protocol 3.0
	Server modes
	Server discovery and authentication
	Initialize request
	textDocument/publishDiagnostics event
	textDocument/didSave event
	sbt/exec request
	sbt/setting request
	sbt/completion request
	sbt/cancelRequest

	Understanding Incremental Recompilation
	sbt heuristics
	How to take advantage of sbt heuristics

	Implementation of incremental recompilation
	Overview
	Interaction with the Scala compiler
	Name hashing algorithm
	What is included in the interface of a Scala class
	Bytecode Enhancers
	Further references

	Configuration
	Classpaths, sources, and resources
	Basics

	Compiler Plugin Support
	Continuations Plugin Example
	Version-specific Compiler Plugin Example

	Configuring Scala
	Automatically managed Scala
	Using Scala from a local directory
	sbt's Scala version

	Forking
	Enable forking
	Change working directory
	Forked JVM options
	Java Home
	Configuring output
	Configuring Input
	Direct Usage

	Global Settings
	Basic global configuration file
	Global Settings using a Global Plugin

	Java Sources
	Usage
	Known issues in mixed mode compilation
	Ignoring the Scala source directories

	Mapping Files
	Relative to a directory
	Rebase
	Flatten
	Alternatives

	Local Scala
	Macro Projects
	Introduction
	Defining the Project Relationships
	Common Interface
	Distribution

	Paths
	Constructing a File
	File Filters

	Parallel Execution
	Task ordering
	Practical constraints
	Configuration
	Future work

	External Processes
	Usage

	Running Project Code
	Problems

	Testing
	Basics
	Output
	Options
	Additional test configurations
	JUnit
	Extensions
	In process class loading
	Troubleshooting

	Globs
	Constructing Globs
	Path names
	Filters
	Depth
	Regular expressions

	Remote Caching
	Dependency Management
	Artifacts
	Selecting default artifacts
	Modifying default artifacts
	Defining custom artifacts
	Publishing .war files
	Using dependencies with artifacts

	Dependency Management Flow
	Library Management
	Introduction
	Manual Dependency Management
	Automatic Dependency Management

	Proxy Repositories
	Overview
	sbt Configuration
	~/.sbt/repositories
	Using credentials for the proxy repository
	Proxying Ivy Repositories

	Publishing
	Skip publishing
	Define the repository
	Publishing locally
	Credentials
	Cross-publishing
	Overriding the publishing convention
	Published artifacts
	Modifying the generated POM
	Version scheme

	Resolvers
	Maven resolvers
	Local Maven resolvers
	Predefined resolvers
	Custom resolvers

	Update Report
	Filtering a Report and Getting Artifacts

	Cached Resolution
	Setup
	Dependency as a graph
	Cached Resolution
	Caveats and known issues
	Motivation

	Tasks and Commands
	Tasks
	Introduction
	Features
	Defining a Task
	Getting values from multiple scopes
	Advanced Task Operations
	Conditional task
	Dynamic Computations with Def.taskDyn
	Using Def.sequential
	Handling Failure

	Caching
	Cache.cached
	Previous value
	Tracked.lastOutput
	Tracked.inputChanged
	FileInfo
	Tracked.inputChanged
	Tracked.outputChanged
	Tracked.diffInputs
	Tracked.diffOutputs
	Case study: sbt-scalafmt
	Summary

	Input Tasks
	Input Keys
	Basic Input Task Definition
	Input Task using Parsers
	The InputTask type
	Using other input tasks
	Preapplying input
	Get a Task from an InputTask

	Commands
	What is a ``command''?
	Introduction
	Defining a Command
	Full Example

	Parsing and tab completion
	Basic parsers
	Built-in parsers
	Combining parsers
	Transforming results
	Controlling tab completion
	Dependent parsers

	State and actions
	Command-related data
	Project-related data
	Project data
	Classpaths
	Running tasks
	Using State in a task
	Updating State in a task

	Tasks/Settings: Motivation
	Application

	Plugins and Best Practices
	General Best Practices
	project/ vs. ~/.sbt/
	Local settings
	.sbtrc
	Generated files
	Don't hard code
	Don't ``mutate'' files
	Use absolute paths
	Parser combinators

	Plugins
	Using an auto plugin
	By Description
	Plugin dependencies
	Creating an auto plugin
	Using a library in a build definition example
	Publishing a plugin
	Best Practices

	Plugins Best Practices
	Key naming convention: Use prefix
	Artifact naming convention
	(optional) Plugin naming convention
	Don't use default package
	Get your plugins known
	Reuse existing keys
	Use settings and tasks. Avoid commands.
	Provide core feature in a plain old Scala object
	Configuration advice
	Scoping advice

	Setting up GitHub Actions with sbt
	Set project/build.properties
	Read the GitHub Actions manual
	Basic setup
	Custom JVM options
	Caching
	Build matrix
	Sample .github/workflows/ci.yml setting
	sbt-github-actions

	Setting up Travis CI with sbt
	Set project/build.properties
	Read the Travis manual
	Basic setup
	Plugin build setup
	Custom JVM options
	Caching
	Build matrix
	Notification
	Dealing with flaky network or tests
	More things
	Sample setting

	Testing sbt plugins
	scripted test framework
	step 1: snapshot
	step 2: SbtPlugin
	step 3: src/sbt-test
	step 4: write a script
	step 5: run the script
	step 6: custom assertion
	step 7: testing the test
	step 8: get inspired

	sbt new and Templates
	Trying new command
	Giter8 support
	How to extend sbt new

	Cross building plugins
	Mixing libraries and sbt plugins in a build

	How to…
	Classpaths
	Include a new type of managed artifact on the classpath, such as mar
	Get the classpath used for compilation
	Get the runtime classpath, including the project's compiled classes
	Get the test classpath, including the project's compiled test classes
	Use packaged jars on classpaths instead of class directories
	Get all managed jars for a configuration
	Get the files included in a classpath
	Get the module and artifact that produced a classpath entry

	Customizing paths
	Change the default Scala source directory
	Change the default Java source directory
	Change the default resource directory
	Change the default (unmanaged) library directory
	Disable using the project's base directory as a source directory
	Add an additional source directory
	Add an additional resource directory
	Include/exclude files in the source directory
	Include/exclude files in the resource directory
	Include only certain (unmanaged) libraries

	Generating files
	Generate sources
	Generate resources

	Inspect the build
	Show or search help for a command, task, or setting
	List available tasks
	List available settings
	Display the description and type of a setting or task
	Display the delegation chain of a setting or task
	Show the list of projects and builds
	Show the current session (temporary) settings
	Show basic information about sbt and the current build
	Show the value of a setting
	Show the result of executing a task
	Show the classpath used for compilation or testing
	Show the main classes detected in a project
	Show the test classes detected in a project

	Interactive mode
	Use tab completion
	Show more tab completion suggestions
	Modify the default JLine keybindings
	Configure the prompt string
	Use history
	Change the location of the interactive history file
	Use the same history for all projects
	Disable interactive history
	Run commands before entering interactive mode

	Configure and use logging
	View the logging output of the previously executed command
	View the previous logging output of a specific task
	Show warnings from the previous compilation
	Change the logging level globally
	Change the logging level for a specific task, configuration, or project
	Configure printing of stack traces
	Print the output of tests immediately instead of buffering
	Add a custom logger
	Log messages in a task
	Log messages in a setting

	Project metadata
	Set the project name
	Set the project version
	Set the project organization
	Set the project's homepage and other metadata

	Configure packaging
	Use the packaged jar on classpaths instead of class directory
	Add manifest attributes
	Change the file name of a package
	Modify the contents of the package

	Running commands
	Pass arguments to a command or task in batch mode
	Provide multiple commands to run consecutively
	Read commands from a file
	Define an alias for a command or task
	Quickly evaluate a Scala expression

	Configure and use Scala
	Set the Scala version used for building the project
	Disable the automatic dependency on the Scala library
	Temporarily switch to a different Scala version
	Use a local Scala installation for building a project
	Build a project against multiple Scala versions
	Enter the Scala REPL with a project's dependencies on the classpath, but not the compiled project classes
	Enter the Scala REPL with a project's dependencies and compiled code on the classpath
	Enter the Scala REPL with plugins and the build definition on the classpath
	Define the initial commands evaluated when entering the Scala REPL
	Define the commands evaluated when exiting the Scala REPL
	Use the Scala REPL from project code

	Generate API documentation
	Select javadoc or scaladoc
	Set the options used for generating scaladoc independently of compilation
	Add options for scaladoc to the compilation options
	Set the options used for generating javadoc independently of compilation
	Add options for javadoc to the compilation options
	Enable automatic linking to the external Scaladoc of managed dependencies
	Enable manual linking to the external Scaladoc of managed dependencies
	Define the location of API documentation for a library

	Define Custom Tasks
	Define a Task that runs tests in specific sub-projects

	How to take an action on startup
	Track file inputs and outputs
	File inputs
	File outputs
	Filters
	File change tracking

	Troubleshoot memory issues
	Sequencing
	Defining a sequential task with Def.sequential
	Defining a dynamic task with Def.taskDyn
	Doing something after an input task
	Defining a dynamic input task with Def.inputTaskDyn
	How to sequence using commands

	How to define a custom dependency configuration
	Cautions on custom dependency configurations
	Example basic custom configuration
	Example sandbox configuration
	How do I add a test configuration?

	Examples
	.sbt build examples
	.sbt build with .scala files example
	project/Resolvers.scala
	project/Dependencies.scala
	project/ShellPromptPlugin.scala
	build.sbt

	Advanced configurations example
	Advanced command example
	Index
	Values and Types
	Methods

	Developer's Guide (Work in progress)
	Towards sbt 1.0
	Modularization
	Module summary

	sbt Coding Guideline
	General goal
	Documentation
	Modular design
	Binary resiliency
	Other public API matters
	Style matters

	sbt-datatype
	Using the plugin
	Datatype schema
	Using datatype to retain binary compatibility
	JSON codec generation
	Existing parameters for protocols, records, etc.
	Settings
	Syntax summary

	Compiler Interface
	Fetching the most specific sources
	sbt Launcher
	Getting Started with the sbt launcher
	Overview

	Sbt Launcher Architecture
	Module Resolution
	Classloader Caching and Isolation
	Caching
	Locking
	Service Discovery and Isolation

	sbt Launcher Configuration
	Example
	Variable Substitution
	Syntax

	Notes
	Core Principles
	Introduction to build state
	Settings Architecture
	Task Architecture

	Settings Core
	Example
	sbt Settings Discussion

	Setting Initialization
	Creating Command Line Applications Using sbt
	Hello World Example

	Archived pages
	Hello, World
	sbt new command
	Running your app
	Exiting sbt shell
	Build definition

